TensorRT-LLMs/tensorrt_llm/executor.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

595 lines
20 KiB
Python

import asyncio
import time
from pathlib import Path
from queue import Queue
from typing import Any, Dict, Generator, List, Optional, Set, Tuple, Union
import torch
from janus import Queue as AsyncQueue
from transformers import AutoTokenizer
import tensorrt_llm.bindings as tllm
from tensorrt_llm._utils import mpi_broadcast, mpi_rank, mpi_world_size
from tensorrt_llm.hlapi.mpi_session import MpiSession, NodeSession, SocketClient
from tensorrt_llm.hlapi.tokenizer import TokenizerBase
from tensorrt_llm.hlapi.utils import GenerationOutput, print_traceback_on_error
from tensorrt_llm.logger import logger
def has_event_loop() -> bool:
try:
asyncio.get_running_loop()
except RuntimeError:
return False
return True
class GenerationRequest:
def __init__(self,
req_id: int,
ids: torch.Tensor,
end_id: int,
pad_id: int,
streaming: bool = True,
digit_input=False,
**kwargs):
self.prompt = None
self.ids = ids
self.streaming = streaming
self.kwargs = kwargs
self.end_id = end_id
self.pad_id = pad_id
self.digit_input = digit_input
self._id = req_id
def get_inference_request(self) -> tllm.InferenceRequest:
ir = tllm.InferenceRequest(self._id)
ir.input_ids = self.ids.to(dtype=torch.int32)
ir.is_streaming = self.streaming
def set_property(name: str,
dtype: torch.dtype = torch.int32,
default: Any = None):
if name in self.kwargs or default is not None:
value = self.kwargs.get(name, default)
setattr(ir, name, torch.tensor([value], dtype=dtype))
set_property("max_new_tokens", default=[8])
set_property("end_id", default=self.end_id)
set_property("pad_id", default=self.pad_id)
set_property("min_length")
set_property("temperature", torch.float32)
set_property("runtime_top_k", torch.float32)
set_property("runtime_top_p", torch.float32)
set_property("random_seed", torch.int64)
return ir
class GenerationResult(GenerationOutput):
def __init__(self,
generation_request: GenerationRequest,
tokenizer: Optional[TokenizerBase] = None) -> None:
self.running = True
self.done = False
self.generation_request = generation_request
self.tokenizer = tokenizer
if has_event_loop():
self._base_queue = AsyncQueue()
self.queue = self._base_queue.sync_q
self.aqueue = self._base_queue.async_q
else:
self._base_queue = Queue()
self.queue = self._base_queue
self.aqueue = None
self.generation: Optional[torch.Tensor]
if generation_request.streaming:
self.generation = generation_request.ids
else:
self.generation = None
# TODO: fill the following fields from GenerationOutput
self.token_ids = []
self.logprobs = []
def enqueue(self, msg: Tuple[Union[str, Dict[str, torch.Tensor]], bool]):
self.queue.put(msg)
def handle_generation_msg(self, msg: Union[str, Dict[str, torch.Tensor]]):
if isinstance(msg, str):
raise RuntimeError(msg)
# TODO[chunweiy]: Unify the msg format for parallel and non-parallel mode
if isinstance(msg, dict):
self.token_ids = msg["output_ids"][0][0]
else:
# this is for parallel mode
assert isinstance(msg, list)
self.token_ids = msg[0]
@staticmethod
def process_generation(msg: dict):
token_ids = msg["output_ids"][0]
# TODO: add other fields if needed
return token_ids
def wait_step(self, timeout: Optional[float] = None):
msg, self.done = self.queue.get(timeout=timeout)
self.handle_generation_msg(msg)
async def await_step(self):
assert self.aqueue is not None
msg, self.done = await self.aqueue.get()
self.handle_generation_msg(msg)
@property
def text(self) -> str:
if self.tokenizer is None:
return ''
return self.tokenizer.decode(self.token_ids)
def result(self, timeout: Optional[float] = None) -> "GenerationResult":
while not self.done:
self.wait_step(timeout)
return self
async def aresult(self) -> "GenerationResult":
while not self.done:
await self.await_step()
return self
def __iter__(self):
return self
def __next__(self):
if self.done:
raise StopIteration
self.wait_step()
return self
def __aiter__(self):
return self
async def __anext__(self):
if self.done:
raise StopAsyncIteration
await self.await_step()
return self
class GenerationExecutor:
TERMINATE_REQUEST_ID = 0
def __init__(
self,
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase, None],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
) -> None:
self.active_requests = 0
self.tokenizer = tokenizer
if tokenizer is not None and not isinstance(tokenizer, TokenizerBase):
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=True)
# NOTE: underscore variables are used for communication with the C++ runtime
self._requests: List[tllm.InferenceRequest] = []
self._results: Dict[int, GenerationResult] = {}
self._cancelled_ids: Set[int] = set()
self._completed: Queue = Queue()
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
self.engine = tllm.GptManager(engine_dir, executor_type, max_beam_width,
executor_policy, self.fetch_requests,
self.handle_response,
self.get_cancelled_ids, self.handle_stats,
executor_config,
GenerationExecutor.TERMINATE_REQUEST_ID)
self._next_request_id = GenerationExecutor.TERMINATE_REQUEST_ID + 1
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
"""
inference_request = request.get_inference_request()
tokenizer = self.tokenizer if not request.digit_input else None
result = GenerationResult(request, tokenizer)
self._results[inference_request.request_id] = result
self.active_requests += 1
self._requests.append(inference_request)
return result
def get_next_request_id(self) -> int:
# underlying type is uint64
uint64_max = 2**64 - 1
request_id = self._next_request_id
self._next_request_id = (request_id + 1) % uint64_max
return request_id
def generate_async(
self,
prompt: Union[str, List[int], List[str], List[List[int]]],
streaming: bool,
max_new_tokens: Union[int, List[int]],
end_id: int = -1,
pad_id: int = -1
) -> Union[GenerationResult, List[GenerationResult]]:
batched = False
digit_input = False
if isinstance(prompt, list):
if isinstance(prompt[0], str): # List[str]
batched = True
if isinstance(max_new_tokens, int):
max_new_tokens = [max_new_tokens] * len(prompt)
elif isinstance(prompt[0], int): # List[int]
digit_input = True
prompt = [prompt]
if not isinstance(max_new_tokens, list):
max_new_tokens = [max_new_tokens]
# List[List[int]]
elif isinstance(prompt[0], list) and isinstance(prompt[0][0], int):
batched = True
digit_input = True
if not isinstance(max_new_tokens, list):
max_new_tokens = [max_new_tokens] * len(prompt)
else: # str
prompt = [prompt]
if not isinstance(max_new_tokens, list):
max_new_tokens = [max_new_tokens]
def get_ids(prompt: str | List[int]) -> torch.Tensor:
if digit_input:
return torch.tensor([prompt], dtype=torch.int32)
return self.tokenizer.encode(prompt,
return_tensors="pt",
return_attention_mask=False)
if end_id == -1:
assert self.tokenizer is not None, "Please specify end_id if tokenizer is not provided"
end_id = self.tokenizer.eos_token_id
pad_id = getattr(self.tokenizer, "pad_token_id", end_id)
results = [
self.submit(
GenerationRequest(req_id=self.get_next_request_id(),
ids=get_ids(p),
streaming=streaming,
max_new_tokens=[m],
pad_id=pad_id,
end_id=end_id,
digit_input=digit_input))
for p, m in zip(prompt, max_new_tokens)
]
if not batched:
results = results[0]
return results
def generate(
self,
prompt: Union[str, List[str]],
max_new_tokens: Union[int, List[int]],
end_id: int = -1,
pad_id: int = -1
) -> Union[GenerationResult, List[GenerationResult]]:
results = self.generate_async(prompt,
False,
max_new_tokens,
end_id=end_id,
pad_id=pad_id)
result_list = [results] if isinstance(results,
GenerationRequest) else results
for result in result_list:
result.result()
return results
def get_stats(self):
return self.stats_queue.get()
async def aget_stats(self):
assert self.stats_aqueue is not None
return await self.stats_aqueue.get()
def wait_first_completed(
self, futures: List[GenerationResult]
) -> Generator[GenerationResult, None, None]:
wait_set = set(f.generation_request._id for f in futures)
# clear already-finished requests
for f in futures:
if f.done:
wait_set.remove(f.generation_request._id)
yield f
# wait remaining active requests
while len(wait_set) > 0:
req_id = self._completed.get()
if req_id in wait_set:
wait_set.remove(req_id)
yield self._results[req_id]
# Callbacks for BatchManager
def fetch_requests(self, max_num_sequences) -> List[tllm.InferenceRequest]:
fetched = []
for _ in range(max_num_sequences):
if len(self._requests) == 0:
break
fetched.append(self._requests.pop())
return fetched
def handle_response(self, req_id: int, tensors: List[tllm.NamedTensor],
finished: bool, err: str) -> None:
self._results[req_id].enqueue(
({t.name: t.tensor
for t in tensors
if t.tensor is not None} if not err else err, finished))
if finished:
self._completed.put(req_id)
def get_cancelled_ids(self) -> Set[int]:
return self._cancelled_ids
def handle_stats(self, stats: str):
while self.stats_queue.full():
self.stats_queue.get()
self.stats_queue.put(stats)
def __enter__(self):
self.engine.__enter__()
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.engine is not None:
self.engine.__exit__(exc_type, exc_value, traceback)
self.engine = None
def __del__(self):
self.__exit__(None, None, None)
class ParallelGenerationExecutor(GenerationExecutor):
''' GenerationExecutor with MPI enabled. '''
def __init__(
self,
world_size: int,
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase, None],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
socket_client: Optional[SocketClient] = None,
) -> None:
self.on_PMP = mpi_world_size() == 1
self.on_MPI = mpi_world_size() > 1
self._terminated = False
self._terminated_sync = False
self.active_requests = 0
self.tokenizer = tokenizer
if tokenizer is not None and not isinstance(tokenizer, TokenizerBase):
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=True)
# NOTE: underscore variables are used for communication with the C++ runtime
self._requests: list[tllm.InferenceRequest] = []
self._results: dict[int, GenerationResult] = {}
self._cancelled_ids: set[int] = set()
self._completed: Queue = Queue()
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
self._next_request_id = GenerationExecutor.TERMINATE_REQUEST_ID + 1
self.socket_client = socket_client
if self.on_PMP:
# initialize the executor on each MPI node
assert isinstance(self.tokenizer,
TokenizerBase), "tokenizer not initialized"
self.mpi_session = MpiSession(
n_workers=world_size,
async_callback=self._async_listener_callback)
self.socket_client = self.mpi_session.get_socket_client()
self.mpi_session.submit_sync(
ParallelGenerationExecutor._node_init_executor_task, engine_dir,
self.tokenizer, max_beam_width, executor_type, executor_policy,
executor_config, self.socket_client)
else:
self.engine = tllm.GptManager(
engine_dir, executor_type, max_beam_width, executor_policy,
self.fetch_requests_on_mpi_node,
self.handle_response_on_mpi_node, self.get_cancelled_ids,
self.handle_stats, executor_config,
GenerationExecutor.TERMINATE_REQUEST_ID)
def submit(self, request: GenerationRequest) -> GenerationResult:
# submit on the PMP
inference_request = request.get_inference_request()
result = GenerationResult(request, self.tokenizer)
self._results[inference_request.request_id] = result
self.active_requests += 1
self.mpi_session.submit_sync(
ParallelGenerationExecutor._node_add_request_task,
inference_request)
return result
@print_traceback_on_error
@staticmethod
def _node_add_request_task(inference_request):
executor: GenerationExecutor = NodeSession.state
assert isinstance(executor,
GenerationExecutor), 'executor not initialized'
executor._requests.append(inference_request)
@print_traceback_on_error
@staticmethod
def _node_init_executor_task(
engine_dir: Path,
tokenizer: TokenizerBase,
max_beam_width: int,
executor_type: tllm.TrtGptModelType,
executor_policy: tllm.SchedulerPolicy,
executor_config: tllm.TrtGptModelOptionalParams,
socket_client: Optional[SocketClient],
):
''' Create a local GenerationExecutor instance for each MPI process. '''
assert not NodeSession.is_initialized(), 'executor already initialized'
logger.info(f'Initializing executor on MPI node #{mpi_rank()}')
world_size = mpi_world_size()
NodeSession.state = ParallelGenerationExecutor(
world_size,
engine_dir,
tokenizer,
max_beam_width,
executor_type,
executor_policy,
executor_config=executor_config,
socket_client=socket_client)
# Callbacks for BatchManager
@print_traceback_on_error
def fetch_requests_on_mpi_node(
self, max_num_sequences) -> List[tllm.InferenceRequest]:
if mpi_rank() != 0 or self._terminated_sync:
if self._terminated:
return []
terminated = mpi_broadcast(self._terminated, 0)
if terminated:
logger.warning(f'#node{mpi_rank()} to terminate')
self._terminated_sync = True
self._terminated = True
if terminated:
return []
batch_size = 0
fetched = []
if mpi_rank() == 0:
batch_size = min(len(self._requests), max_num_sequences)
batch_size = mpi_broadcast(batch_size, 0)
for _ in range(batch_size):
# the MPIPoolExecutor will always submit the same input to every worker, sometimes they arrive at slightly different time
while len(self._requests) == 0:
time.sleep(0.05)
fetched.append(self._requests.pop())
return fetched
def handle_response_on_mpi_node(self, req_id: int,
tensors: List[tllm.NamedTensor],
finished: bool, err: str) -> None:
if mpi_rank() != 0:
return
tensor_dic = {t.name: t.tensor for t in tensors if t.tensor is not None}
output = GenerationResult.process_generation(
tensor_dic) if not err else err
self.socket_client.send(
dict(
req_id=req_id,
output=output if isinstance(output, str) else output.tolist(),
finished=finished,
))
def _async_listener_callback(self, data: Dict[str, Any]):
req_id = data['req_id']
output = data['output']
finished = data['finished']
self._results[req_id].enqueue((output, finished))
if finished:
self._completed.put(req_id)
@print_traceback_on_error
@staticmethod
def _node_quit_task():
executor: GenerationExecutor = NodeSession.state
assert isinstance(executor,
GenerationExecutor), 'executor not initialized'
if mpi_rank() == 0:
executor._terminated = True
time.sleep(1)
executor.engine.__exit__(None, None, None)
NodeSession.state = None
def _shutdown_mpi_nodes(self):
self.mpi_session.submit_sync(ParallelGenerationExecutor._node_quit_task)
def shutdown(self):
if self.on_PMP and self.mpi_session is not None:
self._shutdown_mpi_nodes()
self.mpi_session.shutdown()
self.mpi_session = None
def __del__(self):
self.shutdown()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.shutdown()
return False