mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
703 lines
29 KiB
Python
703 lines
29 KiB
Python
import copy
|
|
import dataclasses
|
|
import json
|
|
import os
|
|
from typing import List, Optional, Union
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
|
|
from .._common import default_net
|
|
from .._utils import (numpy_to_torch, str_dtype_to_torch, str_dtype_to_trt,
|
|
trt_dtype_to_torch)
|
|
from ..functional import PositionEmbeddingType, Tensor, gather_last_token_logits
|
|
from ..layers import (AttentionParams, FusedGatedMLP, GatedMLP,
|
|
KeyValueCacheParams, LoraParams)
|
|
from ..layers.attention import Attention
|
|
from ..layers.linear import ColumnLinear
|
|
from ..logger import logger
|
|
from ..mapping import Mapping
|
|
from ..module import Module, ModuleList
|
|
from ..quantization import QuantMode
|
|
from ..quantization.layers import FP8Linear
|
|
from ..quantization.mode import W8A8_SQ_PLUGIN_LIST
|
|
from ..quantization.quantize import quantize
|
|
from .generation_mixin import GenerationMixin
|
|
|
|
WEIGHT_LOADER_MODELS = {"PhiForCausalLM"}
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class QuantizationConfig:
|
|
'''Serializable quantization configuration class, part of the PretrainedConfig
|
|
'''
|
|
|
|
quant_algo: Optional[str] = None
|
|
kv_cache_quant_algo: Optional[str] = None
|
|
group_size: Optional[int] = 128
|
|
has_zero_point: Optional[bool] = False
|
|
pre_quant_scale: Optional[bool] = False
|
|
exclude_modules: Optional[List[str]] = None
|
|
|
|
@property
|
|
def use_plugin_sq(self):
|
|
return self.quant_algo in W8A8_SQ_PLUGIN_LIST
|
|
|
|
|
|
def default_weight_loader(mapping: Mapping, param: torch.Tensor,
|
|
loaded_weight: torch.Tensor) -> None:
|
|
"""Default weight loader."""
|
|
param.value = loaded_weight
|
|
|
|
|
|
class PretrainedConfig:
|
|
|
|
def __init__(self,
|
|
architecture: str,
|
|
dtype: str,
|
|
logits_dtype: str,
|
|
vocab_size: int,
|
|
max_position_embeddings: int,
|
|
hidden_size: int,
|
|
num_hidden_layers: int,
|
|
num_attention_heads: int,
|
|
num_key_value_heads: int,
|
|
hidden_act: str,
|
|
intermediate_size: int,
|
|
norm_epsilon: float,
|
|
position_embedding_type: str,
|
|
world_size: int,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
quantization: Union[QuantizationConfig, dict],
|
|
use_prompt_tuning: bool = False,
|
|
use_parallel_embedding: bool = False,
|
|
embedding_sharding_dim: int = 0,
|
|
share_embedding_table: bool = False,
|
|
max_lora_rank: int = 64,
|
|
head_size: int = None,
|
|
**kwargs):
|
|
self.architecture = architecture
|
|
self.dtype = dtype
|
|
self.logits_dtype = logits_dtype
|
|
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.head_size = hidden_size // num_attention_heads if head_size is None else head_size
|
|
self.hidden_act = hidden_act
|
|
self.intermediate_size = intermediate_size
|
|
self.norm_epsilon = norm_epsilon
|
|
self.position_embedding_type = PositionEmbeddingType.from_string(
|
|
position_embedding_type)
|
|
self.use_prompt_tuning = use_prompt_tuning
|
|
self.use_parallel_embedding = use_parallel_embedding
|
|
self.embedding_sharding_dim = embedding_sharding_dim
|
|
self.share_embedding_table = share_embedding_table
|
|
self.mapping = Mapping(world_size=world_size,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size)
|
|
# Ideally shall only keep one of quant_mode and quant_config to make sure single source of truth
|
|
# keep them now since many code path is still using the quant_mode
|
|
self.quant_mode = QuantMode.from_quant_algo(
|
|
quantization.quant_algo, quantization.kv_cache_quant_algo)
|
|
if isinstance(quantization, dict):
|
|
self.quantization = dataclasses.replace(QuantizationConfig(),
|
|
**quantization)
|
|
else:
|
|
assert isinstance(
|
|
quantization, QuantizationConfig
|
|
), f"Expecting type of QuantizationConfig, found {type(quantization)}"
|
|
self.quantization = quantization
|
|
self.kv_dtype = self.dtype
|
|
self.max_lora_rank = max_lora_rank
|
|
if self.quant_mode.has_int8_kv_cache():
|
|
self.kv_dtype = 'int8'
|
|
elif self.quant_mode.has_fp8_kv_cache():
|
|
self.kv_dtype = 'fp8'
|
|
|
|
for key, value in kwargs.items():
|
|
try:
|
|
setattr(self, key, value)
|
|
except AttributeError as err:
|
|
raise err
|
|
|
|
def set_if_not_exist(self, key, value):
|
|
if not hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
@classmethod
|
|
def from_dict(cls, config):
|
|
config = copy.deepcopy(
|
|
config
|
|
) # many config.pop calls inside, make one local copy of the config dict such that the function has no side effects
|
|
architecture = config.pop('architecture')
|
|
dtype = config.pop('dtype')
|
|
vocab_size = config.pop('vocab_size')
|
|
hidden_size = config.pop('hidden_size')
|
|
num_hidden_layers = config.pop('num_hidden_layers')
|
|
num_attention_heads = config.pop('num_attention_heads')
|
|
hidden_act = config.pop('hidden_act')
|
|
norm_epsilon = config.pop('norm_epsilon', 1e-5)
|
|
position_embedding_type = config.pop('position_embedding_type',
|
|
'learned_absolute')
|
|
logits_dtype = config.pop('logits_dtype', 'float32')
|
|
num_key_value_heads = config.pop('num_key_value_heads',
|
|
num_attention_heads)
|
|
intermediate_size = config.pop('intermediate_size', None)
|
|
max_position_embeddings = config.pop('max_position_embeddings', None)
|
|
use_prompt_tuning = config.pop('use_prompt_tuning', False)
|
|
use_parallel_embedding = config.pop('use_parallel_embedding', False)
|
|
embedding_sharding_dim = config.pop('embedding_sharding_dim', 0)
|
|
share_embedding_table = config.pop('share_embedding_table', False)
|
|
|
|
mapping = config.pop('mapping', {
|
|
'world_size': 1,
|
|
'tp_size': 1,
|
|
'pp_size': 1
|
|
})
|
|
world_size = mapping.get('world_size', 1)
|
|
tp_size = mapping.get('tp_size', 1)
|
|
pp_size = mapping.get('pp_size', 1)
|
|
|
|
if share_embedding_table and tp_size > 1:
|
|
if (not use_parallel_embedding) or (use_parallel_embedding and
|
|
embedding_sharding_dim == 1):
|
|
raise NotImplementedError(
|
|
"For multiple-processes cases, sharing the embedding table must set" \
|
|
"use_parallel_embedding=True and embedding_sharding_dim=0"
|
|
)
|
|
|
|
quant_config = QuantizationConfig()
|
|
|
|
if 'quantization' in config:
|
|
# override the default quantization object from the given dict, allows user to specify partial set of the fields
|
|
quant_config_from_user = config.pop('quantization')
|
|
if isinstance(quant_config_from_user, dict):
|
|
quant_config = dataclasses.replace(quant_config,
|
|
**quant_config_from_user)
|
|
# allow user to directly pass one QuantizationConfig object
|
|
else:
|
|
assert isinstance(quant_config_from_user, QuantizationConfig)
|
|
quant_config = quant_config_from_user
|
|
|
|
max_lora_rank = config.pop('max_lora_rank', 64)
|
|
|
|
return cls(architecture, dtype, logits_dtype, vocab_size,
|
|
max_position_embeddings, hidden_size, num_hidden_layers,
|
|
num_attention_heads, num_key_value_heads, hidden_act,
|
|
intermediate_size, norm_epsilon, position_embedding_type,
|
|
world_size, tp_size, pp_size, quant_config,
|
|
use_prompt_tuning, use_parallel_embedding,
|
|
embedding_sharding_dim, share_embedding_table, max_lora_rank,
|
|
**config)
|
|
|
|
@classmethod
|
|
def from_json_file(cls, config_file: str):
|
|
with open(config_file) as f:
|
|
config = json.load(f)
|
|
return PretrainedConfig.from_dict(config)
|
|
|
|
def to_dict(self):
|
|
output = copy.deepcopy(self.__dict__)
|
|
|
|
output['position_embedding_type'] = str(self.position_embedding_type)
|
|
output['mapping'] = {
|
|
'world_size': self.mapping.world_size,
|
|
'tp_size': self.mapping.tp_size,
|
|
'pp_size': self.mapping.pp_size,
|
|
}
|
|
output.pop('quant_mode')
|
|
output['quantization'] = dataclasses.asdict(self.quantization)
|
|
|
|
return output
|
|
|
|
def set_rank(self, rank):
|
|
self.mapping = Mapping(self.mapping.world_size,
|
|
rank=rank,
|
|
tp_size=self.mapping.tp_size,
|
|
pp_size=self.mapping.pp_size)
|
|
|
|
|
|
class DecoderLayerList(ModuleList):
|
|
|
|
def __init__(self, cls, config):
|
|
self.layer_list = config.mapping.pp_layers(config.num_hidden_layers)
|
|
super().__init__([cls(config, idx) for idx in self.layer_list])
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
lora_params=None,
|
|
medusa_position_offsets=None,
|
|
medusa_packed_mask=None):
|
|
kv_cache_params.fill_none_tensor_list(len(self.layer_list))
|
|
|
|
if use_cache:
|
|
presents = []
|
|
|
|
for layer_idx, (layer, past) in enumerate(
|
|
zip(self, kv_cache_params.past_key_value)):
|
|
|
|
lora_layer_params = None
|
|
if lora_params is not None and lora_params.lora_ranks is not None:
|
|
lora_layer_params = lora_params.get_layer_params(layer_idx)
|
|
|
|
kwargs = {}
|
|
|
|
if lora_layer_params is not None:
|
|
kwargs['lora_layer_params'] = lora_layer_params
|
|
if medusa_position_offsets is not None:
|
|
kwargs['medusa_position_offsets'] = medusa_position_offsets
|
|
if medusa_packed_mask is not None:
|
|
kwargs['medusa_packed_mask'] = medusa_packed_mask
|
|
hidden_states = layer(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=KeyValueCacheParams(
|
|
past_key_value=[past],
|
|
host_past_key_value_lengths=kv_cache_params.
|
|
host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=kv_cache_params.
|
|
host_max_attention_window_sizes,
|
|
host_sink_token_length=kv_cache_params.
|
|
host_sink_token_length,
|
|
kv_cache_block_pointers=kv_cache_params.
|
|
kv_cache_block_pointers,
|
|
host_kv_cache_block_pointers=kv_cache_params.
|
|
host_kv_cache_block_pointers,
|
|
cache_indirection=kv_cache_params.cache_indirection),
|
|
attention_params=attention_params,
|
|
**kwargs)
|
|
|
|
if use_cache:
|
|
presents.append(hidden_states[1])
|
|
hidden_states = hidden_states[0]
|
|
|
|
if use_cache:
|
|
return hidden_states, presents
|
|
return hidden_states
|
|
|
|
|
|
class PostInitCaller(type):
|
|
|
|
def __call__(cls, *args, **kwargs):
|
|
obj = type.__call__(cls, *args, **kwargs)
|
|
obj.__post_init__()
|
|
return obj
|
|
|
|
|
|
class PretrainedModel(Module, GenerationMixin, metaclass=PostInitCaller):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
def __post_init__(self):
|
|
quantize(self, self.config.quant_mode,
|
|
**dataclasses.asdict(self.config.quantization))
|
|
|
|
def check_config(self, config):
|
|
raise NotImplementedError(
|
|
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
|
)
|
|
|
|
@classmethod
|
|
def from_config(cls, config: PretrainedConfig):
|
|
return cls(config)
|
|
|
|
@classmethod
|
|
def from_checkpoint(cls,
|
|
ckpt_dir: str,
|
|
rank: int = 0,
|
|
config: PretrainedConfig = None):
|
|
if config is None:
|
|
config = PretrainedConfig.from_json_file(
|
|
os.path.join(ckpt_dir, 'config.json'))
|
|
config.set_rank(rank)
|
|
model = cls.from_config(config)
|
|
|
|
weights = {}
|
|
with safetensors.safe_open(os.path.join(ckpt_dir,
|
|
f'rank{rank}.safetensors'),
|
|
framework='pt',
|
|
device='cpu') as f:
|
|
for key in f.keys():
|
|
weights[key] = f.get_tensor(key)
|
|
|
|
model.load(weights)
|
|
|
|
return model
|
|
|
|
def load(self, weights):
|
|
expected_names = set([name for name, param in self.named_parameters()])
|
|
provided_names = set(weights.keys())
|
|
assert expected_names.issubset(
|
|
provided_names
|
|
), f"Expected but not provided tensors:{expected_names.difference(provided_names)}"
|
|
|
|
if self.config.architecture in WEIGHT_LOADER_MODELS:
|
|
mapping = self.config.mapping
|
|
for name, param in self.named_parameters():
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(mapping, param, weights[name])
|
|
else:
|
|
for name, param in self.named_parameters():
|
|
try:
|
|
param.value = weights[name]
|
|
except Exception as e:
|
|
raise RuntimeError(
|
|
f"Encounter error '{e}' for parameter '{name}'")
|
|
|
|
def load_partial_weights(self, weights: dict):
|
|
params = {name: param for name, param in self.named_parameters()}
|
|
mapping = self.config.mapping
|
|
|
|
for k, v in weights.items():
|
|
if k in params.keys():
|
|
param = params[k]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(mapping, param, v)
|
|
elif mapping.pp_size == 1:
|
|
logger.warning(f"Provided but not expected tensors: {k}")
|
|
|
|
def save_checkpoint(self, output_dir, save_config=True):
|
|
# multiple ranks could share same config.json, so adding a save_config parameter to let user avoiding writing config.json in all ranks
|
|
rank = self.config.mapping.rank
|
|
weights = {
|
|
name: numpy_to_torch(param.raw_value)
|
|
for name, param in self.named_parameters()
|
|
}
|
|
from safetensors.torch import save_file
|
|
save_file(weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
|
|
if save_config:
|
|
with open(os.path.join(output_dir, 'config.json'), 'w') as f:
|
|
json.dump(self.config.to_dict(), f, indent=4)
|
|
|
|
def prepare_inputs(self,
|
|
max_batch_size,
|
|
max_input_len,
|
|
max_seq_len,
|
|
use_cache,
|
|
max_beam_width: int = 1,
|
|
max_num_tokens: int = None,
|
|
prompt_embedding_table_size: int = 0,
|
|
position_encoding_2d: bool = False,
|
|
max_draft_len: int = 0,
|
|
gather_context_logits: bool = False,
|
|
gather_generation_logits: bool = False,
|
|
lora_target_modules: List[str] = None):
|
|
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
|
|
ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
|
|
# Prepare inputs
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
use_gpt_attention_plugin = default_net(
|
|
).plugin_config.gpt_attention_plugin
|
|
use_gemm_plugin = default_net().plugin_config.gemm_plugin
|
|
paged_kv_cache = default_net().plugin_config.paged_kv_cache
|
|
tokens_per_block = default_net().plugin_config.tokens_per_block
|
|
use_custom_all_reduce = default_net(
|
|
).plugin_config.use_custom_all_reduce
|
|
use_lora_plugin = default_net().plugin_config.lora_plugin
|
|
|
|
model_inputs = self.prepare_basic_inputs(
|
|
max_batch_size=max_batch_size,
|
|
max_beam_width=max_beam_width,
|
|
max_input_len=max_input_len,
|
|
max_seq_len=max_seq_len,
|
|
num_kv_heads=self.config.num_key_value_heads,
|
|
head_size=self.config.head_size,
|
|
num_layers=self.config.num_hidden_layers,
|
|
kv_dtype=str_dtype_to_trt(self.config.kv_dtype),
|
|
remove_input_padding=remove_input_padding,
|
|
use_gpt_attention_plugin=use_gpt_attention_plugin,
|
|
use_gemm_plugin=use_gemm_plugin,
|
|
paged_kv_cache=paged_kv_cache,
|
|
tokens_per_block=tokens_per_block,
|
|
num_heads=self.config.num_attention_heads,
|
|
max_num_tokens=max_num_tokens,
|
|
dtype=str_dtype_to_trt(self.config.dtype),
|
|
prompt_embedding_table_size=prompt_embedding_table_size,
|
|
position_encoding_2d=position_encoding_2d,
|
|
mapping=self.config.mapping,
|
|
gather_context_logits=gather_context_logits,
|
|
gather_generation_logits=gather_generation_logits,
|
|
use_custom_all_reduce=use_custom_all_reduce,
|
|
use_lora_plugin=use_lora_plugin,
|
|
max_draft_len=max_draft_len,
|
|
lora_target_modules=lora_target_modules)
|
|
|
|
result = {
|
|
'input_ids':
|
|
model_inputs['input_ids'],
|
|
'position_ids':
|
|
model_inputs['position_ids'],
|
|
'use_cache':
|
|
True,
|
|
'last_token_ids':
|
|
model_inputs['last_token_ids'],
|
|
'attention_mask':
|
|
model_inputs['attention_mask'],
|
|
'kv_cache_params':
|
|
KeyValueCacheParams(
|
|
past_key_value=model_inputs['past_key_value'],
|
|
host_past_key_value_lengths=model_inputs[
|
|
'host_past_key_value_lengths'],
|
|
host_max_attention_window_sizes=model_inputs[
|
|
'host_max_attention_window_sizes'],
|
|
host_sink_token_length=model_inputs['host_sink_token_length'],
|
|
kv_cache_block_pointers=model_inputs['kv_cache_block_pointers'],
|
|
host_kv_cache_block_pointers=model_inputs[
|
|
'host_kv_cache_block_pointers'],
|
|
cache_indirection=model_inputs['cache_indirection'],
|
|
),
|
|
'attention_params':
|
|
AttentionParams(
|
|
sequence_length=model_inputs['sequence_length'],
|
|
context_lengths=model_inputs['context_lengths'],
|
|
host_context_lengths=model_inputs['host_context_lengths'],
|
|
max_context_length=max_input_len,
|
|
host_request_types=model_inputs['host_request_types'])
|
|
}
|
|
|
|
if prompt_embedding_table_size > 0:
|
|
result['prompt_embedding_table'] = model_inputs[
|
|
'prompt_embedding_table']
|
|
result['prompt_tasks'] = model_inputs['tasks']
|
|
result['prompt_vocab_size'] = model_inputs['prompt_vocab_size']
|
|
if model_inputs['hidden_states_input'] is not None:
|
|
result['hidden_states'] = model_inputs['hidden_states_input']
|
|
if use_lora_plugin:
|
|
result['lora_params'] = LoraParams(
|
|
model_inputs['lora_ranks'],
|
|
model_inputs['lora_weights_pointers'],
|
|
host_context_lengths=model_inputs['host_context_lengths'],
|
|
max_context_length=max_input_len,
|
|
host_request_types=model_inputs['host_request_types'])
|
|
|
|
return result
|
|
|
|
|
|
class DecoderModelForCausalLM(PretrainedModel):
|
|
|
|
def __init__(self, config, transformer, lm_head):
|
|
super().__init__(config)
|
|
self.transformer = transformer
|
|
self.lm_head = lm_head
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
last_token_ids=None,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None,
|
|
medusa_position_offsets=None,
|
|
medusa_packed_mask=None):
|
|
kwargs = {
|
|
'input_ids': input_ids,
|
|
'position_ids': position_ids,
|
|
'use_cache': use_cache,
|
|
'attention_mask': attention_mask,
|
|
'kv_cache_params': kv_cache_params,
|
|
'attention_params': attention_params,
|
|
}
|
|
if lora_params is not None:
|
|
kwargs['lora_params'] = lora_params
|
|
if hidden_states is not None:
|
|
kwargs['hidden_states'] = hidden_states
|
|
if prompt_embedding_table is not None:
|
|
kwargs['prompt_embedding_table'] = prompt_embedding_table
|
|
if prompt_tasks is not None:
|
|
kwargs['prompt_tasks'] = prompt_tasks
|
|
if prompt_vocab_size is not None:
|
|
kwargs['prompt_vocab_size'] = prompt_vocab_size
|
|
|
|
if medusa_position_offsets is not None:
|
|
kwargs['medusa_position_offsets'] = medusa_position_offsets
|
|
if medusa_packed_mask is not None:
|
|
kwargs['medusa_packed_mask'] = medusa_packed_mask
|
|
|
|
hidden_states = self.transformer.forward(**kwargs)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.config.mapping.is_last_pp_rank():
|
|
hidden_states = gather_last_token_logits(
|
|
hidden_states, last_token_ids,
|
|
default_net().plugin_config.remove_input_padding)
|
|
|
|
# [batch_size, hidden_size] -> [batch_size, vocab_size]
|
|
lm_logits = self.lm_head(hidden_states)
|
|
lm_logits.mark_output('logits', self.config.logits_dtype)
|
|
else:
|
|
hidden_states.mark_output('hidden_states_output', self.config.dtype)
|
|
|
|
if use_cache and not default_net().plugin_config.paged_kv_cache:
|
|
for i, present in zip(
|
|
self.config.mapping.pp_layers(
|
|
self.config.num_hidden_layers), presents):
|
|
present.mark_output(f'present_key_value_{i}',
|
|
self.config.kv_dtype)
|
|
if self.config.mapping.is_last_pp_rank():
|
|
return (lm_logits, presents, hidden_states)
|
|
return (hidden_states, presents)
|
|
else:
|
|
if self.config.mapping.is_last_pp_rank():
|
|
return lm_logits, hidden_states
|
|
return hidden_states
|
|
|
|
|
|
def fuse_gate_mlp(model):
|
|
for layer in model.transformer.layers:
|
|
if not hasattr(layer, 'mlp'):
|
|
continue
|
|
|
|
quant_algo = model.config.quantization.quant_algo
|
|
if isinstance(layer.mlp, GatedMLP):
|
|
fused_layer = FusedGatedMLP(
|
|
hidden_size=layer.mlp.hidden_size,
|
|
ffn_hidden_size=layer.mlp.ffn_hidden_size,
|
|
hidden_act=layer.mlp.hidden_act,
|
|
bias=layer.mlp.bias,
|
|
dtype=layer.mlp.dtype,
|
|
tp_group=layer.mlp.tp_group,
|
|
tp_size=layer.mlp.tp_size,
|
|
quant_mode=layer.mlp.quant_mode,
|
|
max_lora_rank=layer.mlp.max_lora_rank)
|
|
|
|
if quant_algo == 'FP8':
|
|
if isinstance(layer.mlp.dtype, str):
|
|
dtype = str_dtype_to_torch(layer.mlp.dtype)
|
|
else:
|
|
dtype = trt_dtype_to_torch(layer.mlp.dtype)
|
|
|
|
# dequantize
|
|
gate_weight = numpy_to_torch(
|
|
layer.mlp.gate.weight.raw_value).to(dtype) * numpy_to_torch(
|
|
layer.mlp.gate.weights_scaling_factor.raw_value)
|
|
fc_weight = numpy_to_torch(
|
|
layer.mlp.fc.weight.raw_value).to(dtype) * numpy_to_torch(
|
|
layer.mlp.fc.weights_scaling_factor.raw_value)
|
|
|
|
# concat
|
|
fused_weight = torch.cat([gate_weight, fc_weight], dim=0)
|
|
|
|
# quantize
|
|
fused_weight_scaling_factor = numpy_to_torch(
|
|
max(
|
|
layer.mlp.gate.weights_scaling_factor.raw_value,
|
|
layer.mlp.fc.weights_scaling_factor.raw_value,
|
|
))
|
|
fused_weight = (fused_weight / fused_weight_scaling_factor).to(
|
|
torch.float8_e4m3fn)
|
|
|
|
fused_layer.fused_fc.weight.value = fused_weight
|
|
fused_layer.fused_fc.weights_scaling_factor.value = fused_weight_scaling_factor
|
|
|
|
fused_layer.fused_fc.activation_scaling_factor.value = \
|
|
max(layer.mlp.gate.activation_scaling_factor.raw_value,
|
|
layer.mlp.fc.activation_scaling_factor.raw_value
|
|
)
|
|
elif quant_algo is None:
|
|
fused_layer.fused_fc.weight.value = np.concatenate([
|
|
layer.mlp.gate.weight.raw_value,
|
|
layer.mlp.fc.weight.raw_value
|
|
],
|
|
axis=0)
|
|
if layer.mlp.bias:
|
|
fused_layer.fused_fc.bias.value = np.concatenate([
|
|
layer.mlp.gate.bias.raw_value,
|
|
layer.mlp.fc.bias.raw_value
|
|
],
|
|
axis=0)
|
|
else:
|
|
raise ValueError(f'Unsupported quant algo: {quant_algo}')
|
|
|
|
fused_layer.proj = layer.mlp.proj
|
|
|
|
layer.mlp = fused_layer
|
|
|
|
return model
|
|
|
|
|
|
def unfuse_qkv_gemm(model):
|
|
for name, layer in model.named_modules(remove_duplicate=True):
|
|
if isinstance(layer, Attention) and not layer.cross_attention:
|
|
assert layer.tp_size == 1, "please disable manual tp when enable auto parallel"
|
|
if layer.unfuse_qkv_gemm:
|
|
continue
|
|
layer.unfuse_qkv_gemm = True
|
|
linear_class = FP8Linear if layer.use_fp8_qdq else ColumnLinear
|
|
q = linear_class(layer.hidden_size,
|
|
layer.attention_hidden_size,
|
|
bias=layer.bias,
|
|
dtype=layer.dtype,
|
|
gather_output=False)
|
|
k = linear_class(layer.hidden_size,
|
|
layer.num_attention_kv_heads *
|
|
layer.attention_head_size,
|
|
bias=layer.bias,
|
|
dtype=layer.dtype,
|
|
gather_output=False)
|
|
v = linear_class(layer.hidden_size,
|
|
layer.num_attention_kv_heads *
|
|
layer.attention_head_size,
|
|
bias=layer.bias,
|
|
dtype=layer.dtype,
|
|
gather_output=False)
|
|
if layer.qkv.weight.is_inited():
|
|
qkv_weight = layer.qkv.weight.raw_value
|
|
weights = np.split(qkv_weight, [
|
|
q.out_features,
|
|
q.out_features + k.out_features,
|
|
])
|
|
for gemm, weight in zip([q, k, v], weights):
|
|
gemm.weight.value = weight
|
|
if layer.qkv.bias is not None and layer.qkv.bias.is_inited():
|
|
qkv_bias = layer.qkv.bias.raw_value
|
|
biases = np.split(qkv_bias, [
|
|
q.out_features,
|
|
q.out_features + k.out_features,
|
|
])
|
|
for gemm, bias in zip([q, k, v], biases):
|
|
gemm.bias.value = bias
|
|
for name, parameter in layer.qkv._parameters.items():
|
|
if name not in ["weight", "bias"]:
|
|
for gemm in [q, k, v]:
|
|
setattr(gemm, name, parameter)
|
|
layer.q = q
|
|
layer.k = k
|
|
layer.v = v
|
|
layer.qkv = None
|
|
return model
|
|
|
|
|
|
def optimize_model(model, use_fused_mlp=False, use_unfused_qkv_gemm=False):
|
|
if use_fused_mlp:
|
|
model = fuse_gate_mlp(model)
|
|
if use_unfused_qkv_gemm:
|
|
model = unfuse_qkv_gemm(model)
|
|
return model
|