TensorRT-LLMs/tests/hlapi/test_llm.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

283 lines
8.9 KiB
Python

import asyncio
import os
import tempfile
from typing import List
import pytest
import torch
from transformers import AutoTokenizer
from tensorrt_llm.hlapi.llm import (LLM, DecodingMode, KvCacheConfig,
ModelConfig, SamplingConfig, TokenizerBase)
from tensorrt_llm.hlapi.utils import get_total_gpu_memory
def get_model_path(model_name):
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.llm_data import llm_models_root
return str(llm_models_root() / model_name)
default_model_name = "llama-models/llama-7b-hf"
mixtral_model_name = "Mixtral-8x7B-v0.1"
llama_model_path = get_model_path(default_model_name)
llm_engine_dir = os.environ.get('LLM_ENGINE_DIR', './tmp.engine')
prompts = ["A B C"]
cur_dir = os.path.dirname(os.path.abspath(__file__))
models_root = os.path.join(cur_dir, '../../models')
skip_single_gpu = pytest.mark.skipif(
torch.cuda.device_count() < 2,
reason="The test needs at least 2 GPUs, skipping")
def test_llm_loading_from_hf():
config = ModelConfig(llama_model_path)
# The performance-related flags are turned on eagerly to check the functionality
devices = config.parallel_config.get_devices()
if torch.cuda.get_device_properties(devices[0]).major >= 8:
# only available for A100 or newer GPUs
config.multi_block_mode = True
# TODO[chunweiy]: Change to a larger value once SamplingConfig is connected to cpp runtime
config.max_beam_width = 1
llm = LLM(
config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
enable_chunked_context=False,
enable_trt_overlap=True,
decoding_mode=DecodingMode.top_k,
)
sampling_config = llm.get_default_sampling_config()
assert sampling_config is not None
sampling_config.num_beams = 1
for output in llm.generate(prompts):
print(output)
class MyTokenizer(TokenizerBase):
''' A wrapper for the Transformers' tokenizer.
This is the default tokenizer for LLM. '''
@classmethod
def from_pretrained(cls, pretrained_model_dir: str, **kwargs):
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir,
**kwargs)
return MyTokenizer(tokenizer)
def __init__(self, tokenizer):
self.tokenizer = tokenizer
@property
def eos_token_id(self) -> int:
return self.tokenizer.eos_token_id
@property
def pad_token_id(self) -> int:
return self.tokenizer.pad_token_id
def encode(self, text: str, **kwargs) -> List[int]:
return self.tokenizer.encode(text, **kwargs)
def decode(self, token_ids: List[int], **kwargs) -> str:
return self.tokenizer.decode(token_ids, **kwargs)
def batch_encode_plus(self, texts: List[str], **kwargs) -> dict:
return self.tokenizer.batch_encode_plus(texts, **kwargs)
def test_llm_with_customized_tokenizer():
config = ModelConfig(llama_model_path)
llm = LLM(
config,
# a customized tokenizer is passed to override the default one
tokenizer=MyTokenizer.from_pretrained(config.model_dir),
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
for output in llm.generate(prompts):
print(output)
def test_llm_without_tokenizer():
config = ModelConfig(llama_model_path)
llm = LLM(
config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
sampling_config = SamplingConfig(end_id=2,
pad_id=2,
output_sequence_lengths=True,
return_dict=True)
prompts = [[23, 14, 3]]
for output in llm.generate(prompts, sampling_config=sampling_config):
assert not output.text, "The output should be empty since the tokenizer is missing"
print(output)
@skip_single_gpu
def test_llm_build_engine_for_tp2(model_name=default_model_name):
config = ModelConfig(get_model_path(model_name))
config.parallel_config.tp_size = 2
llm = LLM(
config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
with tempfile.TemporaryDirectory() as tmpdir:
llm.save(tmpdir)
@skip_single_gpu
@pytest.mark.parametrize("use_auto_parallel", [True, False],
ids=["enable_auto_parallel", "disable_auto_parallel"])
def test_llm_generate_for_tp2(use_auto_parallel):
config = ModelConfig(llama_model_path)
if use_auto_parallel:
config.parallel_config.world_size = 2
config.parallel_config.auto_parallel = True
else:
config.parallel_config.tp_size = 2
llm = LLM(
config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
for output in llm.generate(prompts):
print(output)
# TODO[chunweiy]: Move mixtral test to the e2e test
def is_memory_enough_for_mixtral():
if torch.cuda.device_count() < 2:
return False
try:
total_memory = get_total_gpu_memory(0) + get_total_gpu_memory(1)
if total_memory >= 160 * 1024**3:
return True
except:
return False
@skip_single_gpu
@pytest.mark.skipif(not is_memory_enough_for_mixtral(),
reason="The test needs at least 160GB memory, skipping")
def test_llm_generate_mixtral_for_tp2():
config = ModelConfig(get_model_path(mixtral_model_name))
config.parallel_config.tp_size = 2
llm = LLM(
config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
for output in llm.generate(prompts):
print(output)
def test_llm_generate_async(model_name=default_model_name,
tp_size: int = 1,
use_auto_parallel: bool = False):
if "Mixtral" in model_name and use_auto_parallel:
pytest.skip("Auto parallel is not supported for Mixtral models")
config = ModelConfig(llama_model_path)
if use_auto_parallel:
config.parallel_config.world_size = tp_size
config.parallel_config.auto_parallel = True
else:
config.parallel_config.tp_size = tp_size
kv_cache_config = KvCacheConfig(free_gpu_memory_fraction=0.4)
devices = config.parallel_config.get_devices()
if torch.cuda.get_device_properties(devices[0]).major >= 8:
kv_cache_config.enable_block_reuse = True
llm = LLM(
config,
kv_cache_config=kv_cache_config,
)
def test_async(streaming: bool):
async def task(prompt: str):
outputs = []
async for output in llm.generate_async(prompt, streaming=streaming):
print('output', output)
outputs.append(output.text)
print(' '.join(outputs))
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
def test_wait(streaming: bool):
for prompt in prompts:
future = llm.generate_async(prompt, streaming=streaming)
for output in future:
print('wait', output)
def test_non_streaming_usage_wait():
for prompt in prompts:
output = llm.generate_async(prompt, streaming=False)
print(output.text)
def test_future(streaming: bool):
for prompt in prompts:
future = llm.generate_async(prompt, streaming=streaming)
if streaming is True:
for output in future:
# Do something else and then wait for the result if needed
output = output.result(timeout=10)
print('future', output.text)
else:
# Do something else and then wait for the result if needed
output = future.result(timeout=10)
print('future', output.text)
def test_future_async():
async def task(prompt: str):
future = llm.generate_async(prompt, streaming=False)
output = await future.aresult()
print('future', output.text)
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
test_async(streaming=True)
test_async(streaming=False)
test_wait(streaming=True)
test_wait(streaming=False)
test_future(streaming=True)
test_future(streaming=False)
test_future_async()
test_non_streaming_usage_wait()
@skip_single_gpu
@pytest.mark.parametrize("use_auto_parallel", [True, False],
ids=["enable_auto_parallel", "disable_auto_parallel"])
def test_llm_generate_async_tp2(use_auto_parallel):
test_llm_generate_async(default_model_name,
tp_size=2,
use_auto_parallel=use_auto_parallel)
# TODO[chunweiy]: Add test for loading inmemory model
if __name__ == '__main__':
# test_llm_generate_async_tp2()
test_llm_loading_from_hf()