mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-22 03:35:00 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
174 lines
6.1 KiB
Python
174 lines
6.1 KiB
Python
import asyncio
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
from contextlib import contextmanager
|
|
|
|
from profile_utils import profile
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.builder import BuildConfig, build
|
|
from tensorrt_llm.executor import GenerationExecutor
|
|
from tensorrt_llm.models import LLaMAForCausalLM
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.llm_data import llm_models_root
|
|
from utils.util import skip_pre_ampere
|
|
|
|
tensorrt_llm.logger.set_level('verbose')
|
|
|
|
input_text = [
|
|
'Born in north-east France, Soyer trained as a',
|
|
"What is large language model?"
|
|
]
|
|
expected_output = [
|
|
"chef in Paris and London before moving to New York",
|
|
"\nLarge language model is a model that is"
|
|
]
|
|
|
|
|
|
@contextmanager
|
|
def workspace(suffix, prefix="./trtllm_workspace"):
|
|
keep_workspace = os.environ.get("TRTLLM_KEEP", False)
|
|
if not keep_workspace:
|
|
temp = tempfile.TemporaryDirectory(suffix)
|
|
yield temp.name
|
|
else:
|
|
temp = f"{prefix}/{suffix}"
|
|
os.makedirs(temp, exist_ok=True)
|
|
yield temp
|
|
|
|
|
|
# 233s on ipp1-1197: loading weights 37s, network/engine 27s, save engine: 35s, load engine (14GB) about 100s
|
|
@profile("save-and-load")
|
|
@skip_pre_ampere
|
|
def test_save_load():
|
|
'''When the engine_dir parameter of to_trt and generate is not None
|
|
to_trt() saves the engine to disk.
|
|
generate() loads engine from the disk.
|
|
This is optional, but users can store the engine into any folder they want, and use later
|
|
'''
|
|
max_batch_size, max_isl, max_osl = 8, 256, 256
|
|
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
|
|
tokenizer_dir = hf_model_dir
|
|
with workspace("llama-save-load") as engine_dir:
|
|
# build and run by one llama object
|
|
llama = LLaMAForCausalLM.from_hugging_face(hf_model_dir, 'float16')
|
|
engine = build(
|
|
llama,
|
|
BuildConfig(max_batch_size=max_batch_size,
|
|
max_input_len=max_isl,
|
|
max_output_len=max_osl))
|
|
engine.save(engine_dir)
|
|
|
|
executor = GenerationExecutor(engine_dir, tokenizer_dir)
|
|
for idx, output in enumerate(
|
|
executor.generate(input_text, [10] * len(input_text))):
|
|
tensorrt_llm.logger.info(f"Input: {input_text[idx]}")
|
|
tensorrt_llm.logger.info(f'Output: {output.text}')
|
|
# note the output.text contains everything from the input, so only compare the suffix here.
|
|
assert output.text.endswith(
|
|
expected_output[idx]
|
|
), f"Expecting and got:'{expected_output[idx]}' Got: '{output.text}'"
|
|
|
|
|
|
# 76s on ipp1-1197, loading weights 18s (varies based on network speed), network/engine creation 27s
|
|
@profile("all-in-one-step")
|
|
@skip_pre_ampere
|
|
def test_all_in_one_step():
|
|
'''Do not save the engine, all in one LLaMAForCausalLM object
|
|
'''
|
|
max_batch_size, max_isl, max_osl = 8, 256, 256
|
|
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
|
|
|
|
# build and run by one llama object
|
|
llama = LLaMAForCausalLM.from_hugging_face(hf_model_dir, 'float16')
|
|
build(
|
|
llama,
|
|
BuildConfig(max_batch_size=max_batch_size,
|
|
max_input_len=max_isl,
|
|
max_output_len=max_osl))
|
|
|
|
# TODO (tali): init the generation executor from the in-memory engine
|
|
# This is depending on WIP MR https://gitlab-master.nvidia.com/ftp/tekit/-/merge_requests/2785
|
|
|
|
|
|
@profile(tag="fake-weights")
|
|
@skip_pre_ampere
|
|
def test_high_level_fake_weights():
|
|
'''sanity to make sure the flow works. The key is "skip_loading_weights" param
|
|
'''
|
|
input_text = [
|
|
'Born in north-east France, Soyer trained as a',
|
|
"What is large language model?"
|
|
]
|
|
max_batch_size, max_isl, max_osl = 8, 256, 256
|
|
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
|
|
|
|
# Fake weights, skipping save and load engine. Make it faster to sanity test
|
|
llama = LLaMAForCausalLM.from_hugging_face(hf_model_dir,
|
|
'float16',
|
|
skip_loading_weights=True)
|
|
build(
|
|
llama,
|
|
BuildConfig(max_batch_size=max_batch_size,
|
|
max_input_len=max_isl,
|
|
max_output_len=max_osl))
|
|
|
|
|
|
@skip_pre_ampere
|
|
def _test_inflight_batching():
|
|
# TODO[chunweiy]: Enable it later
|
|
max_batch_size, max_isl, max_osl = 8, 256, 256
|
|
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
|
|
tokenizer_dir = hf_model_dir
|
|
|
|
llama = LLaMAForCausalLM.from_hugging_face(hf_model_dir, 'float16')
|
|
engine = build(
|
|
llama,
|
|
BuildConfig(max_batch_size=max_batch_size,
|
|
max_input_len=max_isl,
|
|
max_output_len=max_osl))
|
|
engine_dir = "llama-ifb"
|
|
engine_temp = tempfile.TemporaryDirectory(engine_dir)
|
|
engine_dir = engine_temp.name
|
|
engine.save(engine_dir)
|
|
|
|
async def main():
|
|
async_engine = GenerationExecutor(engine_dir, tokenizer_dir)
|
|
|
|
async def generate_and_print(idx, inp):
|
|
result = async_engine.generate_async(inp,
|
|
streaming=False,
|
|
max_new_tokens=10)
|
|
await result.aresult()
|
|
tensorrt_llm.logger.info(result.text)
|
|
assert result.text.endswith(expected_output[idx])
|
|
|
|
output = ""
|
|
async for stream in async_engine.generate_async(inp,
|
|
streaming=True,
|
|
max_new_tokens=10):
|
|
output += stream.text + ' '
|
|
tensorrt_llm.logger.info(
|
|
f"prompt: '{inp}', generation: '{output}'")
|
|
|
|
loop = asyncio.get_running_loop()
|
|
tasks = []
|
|
# submit many request concurrently
|
|
for idx, inp in enumerate(input_text):
|
|
task = loop.create_task(generate_and_print(idx, inp))
|
|
tasks.append(task)
|
|
|
|
# wait all task done
|
|
await asyncio.gather(*tasks)
|
|
|
|
asyncio.run(main())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_all_in_one_step()
|
|
test_high_level_fake_weights()
|
|
test_save_load()
|
|
test_inflight_batching()
|