TensorRT-LLMs/cpp/tests/resources/scripts/build_llama_engines.py
Robin Kobus 4cd8543d8c
[TRTLLM-1316] refactor: Remove unnecessary pipeline parallelism logic from postProcessRequest (#5489)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-07-02 10:13:31 +02:00

150 lines
5.0 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import pathlib as _pl
import platform as _pf
import sys as _sys
import time
from build_engines_utils import run_command, wincopy
import tensorrt_llm.bindings as _tb
from tensorrt_llm.bindings.internal.testing import ModelSpec
def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, convert_extra_args,
build_extra_args):
ckpt_dir = engine_dir / 'ckpt'
convert_cmd = [
_sys.executable, "examples/models/core/llama/convert_checkpoint.py"
] + ([f'--model_dir={weight_dir}'] if weight_dir else []) + [
f'--output_dir={ckpt_dir}',
'--dtype=float16',
] + convert_extra_args
run_command(convert_cmd)
build_args = [
'trtllm-build',
f'--checkpoint_dir={ckpt_dir}',
f'--output_dir={engine_dir}',
'--gpt_attention_plugin=float16',
'--gemm_plugin=float16',
'--max_batch_size=32',
'--max_input_len=40',
'--max_seq_len=60',
'--max_beam_width=2',
'--log_level=error',
'--paged_kv_cache=enable',
'--remove_input_padding=enable',
] + build_extra_args
run_command(build_args)
def build_engines(model_cache: str, only_multi_gpu: bool):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'Llama-3.2-1B'
if model_cache:
print("Copy model from model_cache")
model_cache_dir = _pl.Path(
model_cache) / 'llama-3.2-models' / model_name
assert (model_cache_dir.is_dir()), model_cache_dir
if _pf.system() == "Windows":
wincopy(source=str(model_cache_dir),
dest=model_name,
isdir=True,
cwd=models_dir)
else:
run_command(["rsync", "-rlptD",
str(model_cache_dir), "."],
cwd=models_dir)
hf_dir = models_dir / model_name
assert hf_dir.is_dir(), f"testing {hf_dir}"
engine_dir = models_dir / 'rt_engine' / model_name
model_spec_obj = ModelSpec('input_tokens_llama.npy', _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
tp_pp_cp_sizes = [(1, 1, 1)]
if only_multi_gpu:
tp_pp_cp_sizes = [(1, 4, 1), (4, 1, 1), (1, 2, 1), (2, 2, 1), (2, 1, 1),
(1, 1, 2), (2, 1, 2)]
for tp_size, pp_size, cp_size in tp_pp_cp_sizes:
print(f"\nBuilding fp16 tp{tp_size} pp{pp_size} cp{cp_size} engine")
start_time = time.time()
tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu"
model_spec_obj.use_tensor_parallelism(tp_size)
model_spec_obj.use_pipeline_parallelism(pp_size)
model_spec_obj.use_context_parallelism(cp_size)
build_engine(
hf_dir, engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
[
f'--tp_size={tp_size}', f'--pp_size={pp_size}',
f'--cp_size={cp_size}'
], ['--use_paged_context_fmha=disable'])
duration = time.time() - start_time
print(
f"Building fp16 tp{tp_size} pp{pp_size} cp{cp_size} engine took {duration} seconds"
)
if not only_multi_gpu:
print(f"\nBuilding lookahead engine")
start_time = time.time()
model_spec_obj.use_tensor_parallelism(1)
model_spec_obj.use_pipeline_parallelism(1)
model_spec_obj.use_context_parallelism(1)
model_spec_obj.use_lookahead_decoding()
build_engine(
hf_dir,
engine_dir / model_spec_obj.get_model_path() / 'tp1-pp1-cp1-gpu',
[], [
'--max_draft_len=39',
'--speculative_decoding_mode=lookahead_decoding'
])
duration = time.time() - start_time
print(f"Building lookahead engine took {duration} seconds")
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument(
"--only_multi_gpu",
action="store_true",
help="Flag to build only for Tensor and Pipeline parallelism")
build_engines(**vars(parser.parse_args()))