mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
150 lines
5.0 KiB
Python
150 lines
5.0 KiB
Python
#!/usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse as _arg
|
|
import pathlib as _pl
|
|
import platform as _pf
|
|
import sys as _sys
|
|
import time
|
|
|
|
from build_engines_utils import run_command, wincopy
|
|
|
|
import tensorrt_llm.bindings as _tb
|
|
from tensorrt_llm.bindings.internal.testing import ModelSpec
|
|
|
|
|
|
def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, convert_extra_args,
|
|
build_extra_args):
|
|
|
|
ckpt_dir = engine_dir / 'ckpt'
|
|
|
|
convert_cmd = [
|
|
_sys.executable, "examples/models/core/llama/convert_checkpoint.py"
|
|
] + ([f'--model_dir={weight_dir}'] if weight_dir else []) + [
|
|
f'--output_dir={ckpt_dir}',
|
|
'--dtype=float16',
|
|
] + convert_extra_args
|
|
|
|
run_command(convert_cmd)
|
|
|
|
build_args = [
|
|
'trtllm-build',
|
|
f'--checkpoint_dir={ckpt_dir}',
|
|
f'--output_dir={engine_dir}',
|
|
'--gpt_attention_plugin=float16',
|
|
'--gemm_plugin=float16',
|
|
'--max_batch_size=32',
|
|
'--max_input_len=40',
|
|
'--max_seq_len=60',
|
|
'--max_beam_width=2',
|
|
'--log_level=error',
|
|
'--paged_kv_cache=enable',
|
|
'--remove_input_padding=enable',
|
|
] + build_extra_args
|
|
|
|
run_command(build_args)
|
|
|
|
|
|
def build_engines(model_cache: str, only_multi_gpu: bool):
|
|
resources_dir = _pl.Path(__file__).parent.resolve().parent
|
|
models_dir = resources_dir / 'models'
|
|
model_name = 'Llama-3.2-1B'
|
|
|
|
if model_cache:
|
|
print("Copy model from model_cache")
|
|
model_cache_dir = _pl.Path(
|
|
model_cache) / 'llama-3.2-models' / model_name
|
|
assert (model_cache_dir.is_dir()), model_cache_dir
|
|
|
|
if _pf.system() == "Windows":
|
|
wincopy(source=str(model_cache_dir),
|
|
dest=model_name,
|
|
isdir=True,
|
|
cwd=models_dir)
|
|
else:
|
|
run_command(["rsync", "-rlptD",
|
|
str(model_cache_dir), "."],
|
|
cwd=models_dir)
|
|
|
|
hf_dir = models_dir / model_name
|
|
assert hf_dir.is_dir(), f"testing {hf_dir}"
|
|
|
|
engine_dir = models_dir / 'rt_engine' / model_name
|
|
|
|
model_spec_obj = ModelSpec('input_tokens_llama.npy', _tb.DataType.HALF)
|
|
model_spec_obj.use_gpt_plugin()
|
|
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
|
|
model_spec_obj.use_packed_input()
|
|
|
|
tp_pp_cp_sizes = [(1, 1, 1)]
|
|
if only_multi_gpu:
|
|
tp_pp_cp_sizes = [(1, 4, 1), (4, 1, 1), (1, 2, 1), (2, 2, 1), (2, 1, 1),
|
|
(1, 1, 2), (2, 1, 2)]
|
|
for tp_size, pp_size, cp_size in tp_pp_cp_sizes:
|
|
print(f"\nBuilding fp16 tp{tp_size} pp{pp_size} cp{cp_size} engine")
|
|
start_time = time.time()
|
|
|
|
tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu"
|
|
model_spec_obj.use_tensor_parallelism(tp_size)
|
|
model_spec_obj.use_pipeline_parallelism(pp_size)
|
|
model_spec_obj.use_context_parallelism(cp_size)
|
|
|
|
build_engine(
|
|
hf_dir, engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
|
|
[
|
|
f'--tp_size={tp_size}', f'--pp_size={pp_size}',
|
|
f'--cp_size={cp_size}'
|
|
], ['--use_paged_context_fmha=disable'])
|
|
|
|
duration = time.time() - start_time
|
|
print(
|
|
f"Building fp16 tp{tp_size} pp{pp_size} cp{cp_size} engine took {duration} seconds"
|
|
)
|
|
|
|
if not only_multi_gpu:
|
|
print(f"\nBuilding lookahead engine")
|
|
start_time = time.time()
|
|
|
|
model_spec_obj.use_tensor_parallelism(1)
|
|
model_spec_obj.use_pipeline_parallelism(1)
|
|
model_spec_obj.use_context_parallelism(1)
|
|
model_spec_obj.use_lookahead_decoding()
|
|
build_engine(
|
|
hf_dir,
|
|
engine_dir / model_spec_obj.get_model_path() / 'tp1-pp1-cp1-gpu',
|
|
[], [
|
|
'--max_draft_len=39',
|
|
'--speculative_decoding_mode=lookahead_decoding'
|
|
])
|
|
|
|
duration = time.time() - start_time
|
|
print(f"Building lookahead engine took {duration} seconds")
|
|
|
|
print("Done.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = _arg.ArgumentParser()
|
|
parser.add_argument("--model_cache",
|
|
type=str,
|
|
help="Directory where models are stored")
|
|
parser.add_argument(
|
|
"--only_multi_gpu",
|
|
action="store_true",
|
|
help="Flag to build only for Tensor and Pipeline parallelism")
|
|
|
|
build_engines(**vars(parser.parse_args()))
|