TensorRT-LLMs/tests/integration/defs/examples/test_redrafter.py
Darragh Hanley 5437075def
ReDrafter support for Qwen (#4875)
Signed-off-by: darraghdog <darragh.hanley@gmail.com>
Signed-off-by: Darragh Hanley <darragh.hanley@gmail.com>
Co-authored-by: rakib-hasan <rhasan@nvidia.com>
2025-06-28 02:33:10 +08:00

92 lines
3.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from defs.common import convert_weights, venv_check_call
from defs.trt_test_alternative import check_call
@pytest.mark.parametrize("batch_size", [8], ids=['bs8'])
@pytest.mark.parametrize("redrafter_num_beams", [5, 8], ids=['nb5', 'nb8'])
@pytest.mark.parametrize("redrafter_draft_len_per_beam", [5], ids=['dl5'])
@pytest.mark.parametrize("data_type", ['bfloat16'])
@pytest.mark.parametrize("redrafter_model_roots", ["redrafter-vicuna-7b-v1.3"],
indirect=True)
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_redrafter_1gpu(batch_size, data_type, redrafter_model_roots,
redrafter_num_beams, redrafter_draft_len_per_beam,
redrafter_example_root, llama_example_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, cmodel_base_dir, engine_dir,
use_py_session):
print("Build engines...")
model_name = "redrafter"
base_model_name = "llama"
base_example_root = llama_example_root
base_model_dir = convert_weights(llm_venv=llm_venv,
example_root=base_example_root,
cmodel_dir=cmodel_base_dir,
model=base_model_name,
model_path=redrafter_model_roots[0],
data_type=data_type)
redrafter_convert_roots = (base_model_dir, redrafter_model_roots[1])
model_dir = convert_weights(
llm_venv=llm_venv,
example_root=redrafter_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=redrafter_convert_roots,
data_type=data_type,
redrafter_num_beams=redrafter_num_beams,
redrafter_draft_len_per_beam=redrafter_draft_len_per_beam)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
f"--max_beam_width=1",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--max_input_len=1024",
"--max_seq_len=1536",
f"--max_batch_size={batch_size}",
"--kv_cache_type=paged",
'--speculative_decoding_mode=explicit_draft_tokens',
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run summarize...")
summary_cmd = [
f"{redrafter_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{redrafter_model_roots[0]}", "--tokenizer_dir",
f"{redrafter_model_roots[0]}", f"--engine_dir={engine_dir}",
"--check_accuracy", "--tensorrt_llm_rouge1_threshold=24",
f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if use_py_session:
summary_cmd.append("--use_py_session")
venv_check_call(llm_venv, summary_cmd)