TensorRT-LLMs/tests/integration/defs/examples/test_mistral.py
nv-guomingz cf35a079f9
fix:https://nvbugs/5298661 (#5022)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
2025-06-12 20:41:44 +08:00

292 lines
11 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module test_mistral test mistral examples."""
import multiprocessing
import platform
import psutil
import pytest
from defs.common import (convert_weights, quantize_data,
test_multi_lora_support, venv_check_call)
from defs.conftest import skip_post_blackwell, skip_pre_ada
from defs.trt_test_alternative import check_call
def get_optimal_jobs():
cpu_count = multiprocessing.cpu_count()
available_memory = psutil.virtual_memory().available / (1024 * 1024 * 1024)
memory_per_job = 4
memory_based_jobs = int(available_memory / memory_per_job)
system_load = psutil.getloadavg()[0] / cpu_count
if system_load > 0.7:
cpu_factor = 0.5
else:
cpu_factor = 0.75
cpu_based_jobs = max(1, int(cpu_count * cpu_factor))
optimal_jobs = max(1, min(cpu_based_jobs, memory_based_jobs))
return optimal_jobs
@pytest.fixture(autouse=True, scope="module")
def mistral_example_root(llm_venv):
if platform.system() != "Windows":
# https://github.com/Dao-AILab/flash-attention/issues/345
# No wheel for flash-attn on windows and compilation fails locally.
max_jobs = get_optimal_jobs()
install_cmd = [
f"MAX_JOBS={max_jobs}",
"python3",
"-m",
"pip",
"install",
"--upgrade",
"flash-attn==2.4.2",
]
check_call(" ".join(install_cmd), shell=True, env=llm_venv._new_env)
@skip_post_blackwell #nvbug 5298661
@pytest.mark.parametrize(
"run_type",
['inference', 'summarization_long', 'chunked_summarization_long'])
@pytest.mark.parametrize("max_attention_window", [4096],
ids=['max_attention_window_size_4096'])
@pytest.mark.parametrize("data_type", ['float16'])
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
indirect=True)
def test_llm_mistral_v1_1gpu(run_type, data_type, llama_example_root,
max_attention_window, llm_mistral_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir):
print("Build engines...")
if run_type == "summarization_long":
model_name = 'mistral-{}'.format(run_type)
model_dir = convert_weights(llm_venv=llm_venv,
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_mistral_model_root,
data_type=data_type)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
"--max_input_len",
"6400",
f"--max_batch_size={1}",
"--max_seq_len",
"6528",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
"--context_fmha=enable",
"--use_paged_context_fmha=disable",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run long context summarize...")
# using shorter input length since A30 doesn't have enough device memory.
summary_cmd = [
f"{llama_example_root}/summarize_long.py",
"--test_trt_llm",
"--test_hf",
"--hf_model_location",
f"{llm_mistral_model_root}",
"--data_type",
"fp16",
f"--engine_dir={engine_dir}",
f"--max_attention_window_size={max_attention_window}",
"--max_ite",
"3",
"--max_input_len",
"6400",
"--tensorrt_llm_rouge1_threshold",
"90",
"--check_accuracy",
]
# https://nvbugs/4658787
# WAR before summarize_long.py can work offline
env = {"HF_DATASETS_OFFLINE": "0"}
venv_check_call(llm_venv, summary_cmd, env=env)
# multi block + sliding window attention tests.
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
"--max_input_len",
"6400",
"--max_seq_len",
"6528",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
"--use_paged_context_fmha=disable",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run long context summarize with multi_block_mode enabled...")
# using shorter input length since A30 doesn't have enough device memory.
summary_cmd = [
f"{llama_example_root}/summarize_long.py", "--test_trt_llm",
"--test_hf", "--hf_model_location", f"{llm_mistral_model_root}",
"--data_type", "fp16", f"--engine_dir={engine_dir}",
f"--max_attention_window_size={max_attention_window}", "--max_ite",
"3", "--max_input_len", "6400", "--tensorrt_llm_rouge1_threshold",
"90", "--check_accuracy"
]
venv_check_call(llm_venv, summary_cmd, env=env)
elif run_type == "chunked_summarization_long":
model_name = 'mistral-{}'.format(run_type)
model_dir = convert_weights(llm_venv=llm_venv,
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_mistral_model_root,
data_type=data_type)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
"--max_input_len",
"6400",
"--max_num_tokens=2048",
"--use_paged_context_fmha=enable",
f"--max_batch_size={1}",
"--max_seq_len",
"6528",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
"--context_fmha=enable",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run long context summarize...")
summary_cmd = [
f"{llama_example_root}/../../../summarize.py",
"--eval_task=summarize_long", "--test_trt_llm", "--test_hf",
"--hf_model_dir", f"{llm_mistral_model_root}", "--data_type",
"fp16", f"--engine_dir={engine_dir}",
f"--max_attention_window_size={max_attention_window}",
"--max_input_length", "6400", "--tensorrt_llm_rouge1_threshold",
"21", "--check_accuracy", "--enable_chunked_context"
]
# https://nvbugs/4658787
# WAR before summarize_long.py can work offline
env = {"HF_DATASETS_OFFLINE": "0"}
venv_check_call(llm_venv, summary_cmd, env=env)
@skip_pre_ada
@pytest.mark.parametrize("llm_mistral_model_root", ['komt-mistral-7b-v1'],
indirect=True)
@pytest.mark.parametrize("llm_lora_model_root", ['komt-mistral-7b-v1-lora'],
indirect=True)
def test_llm_mistral_lora_1gpu(llama_example_root, llm_mistral_model_root,
llm_datasets_root, llm_venv, engine_dir,
llm_lora_model_root, qcache_dir):
"run mistral lora test on 1gpu"
print("Quantization...")
model_dir = quantize_data(
llm_venv,
llama_example_root,
model_dir=llm_mistral_model_root,
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
dtype="float16",
qformat="fp8",
quantize_dir=qcache_dir,
calib_size=512,
kv_cache_dtype="fp8")
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--lora_dir={llm_lora_model_root}",
"--lora_plugin=auto",
"--gemm_plugin=auto",
"--max_batch_size=8",
"--max_input_len=32256",
"--max_seq_len=33280",
"--use_paged_context_fmha=enable",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
input_text = "[INST]오늘은 날씨가 아주 좋다 내가 공원에 갔을 때 [/INST]"
run_cmd = [
f"{llama_example_root}/../../../run.py",
f"--input_text={input_text}",
f"--tokenizer_dir={llm_mistral_model_root}",
f"--engine_dir={engine_dir}",
"--max_output_len=1024",
"--max_attention_window_size=4096",
"--lora_task_uids=0",
"--temperature=0.8",
"--top_p=0.8",
"--top_k=100",
"--random_seed=0",
]
venv_check_call(llm_venv, run_cmd)
@skip_pre_ada
@pytest.mark.skip_less_device_memory(80000)
@pytest.mark.parametrize("mistral_nemo_minitron_model_root",
['Mistral-NeMo-Minitron-8B-Instruct'],
indirect=True)
def test_mistral_nemo_minitron_fp8_with_bf16_lora(
llama_example_root,
mistral_nemo_minitron_model_root,
llm_datasets_root,
qcache_dir,
llm_rouge_root,
llm_venv,
engine_dir,
num_beams=1,
):
"Run Mistral Nemo Minitron 8B with multiple pseudo LoRAs."
# Quantize the base model to fp8.
qmodel_dir = quantize_data(
llm_venv,
llama_example_root,
model_dir=mistral_nemo_minitron_model_root,
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
dtype="bfloat16",
qformat="fp8",
quantize_dir=qcache_dir,
calib_size=32,
kv_cache_dtype="fp8")
test_multi_lora_support(
hf_model_dir=mistral_nemo_minitron_model_root,
tllm_ckpt_dir=qmodel_dir,
engine_dir=engine_dir,
llm_venv=llm_venv,
example_root=llama_example_root,
num_loras=2,
lora_rank=8,
target_hf_modules=["q_proj", "k_proj", "v_proj"],
target_trtllm_modules=["attn_q", "attn_k", "attn_v"],
zero_lora_weights=True,
)