mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
372 lines
15 KiB
C++
372 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/rnnStateBuffers.h"
|
|
#include "iBuffer.h"
|
|
#include "tensorrt_llm/runtime/runtimeBuffers.h"
|
|
#include "tensorrt_llm/runtime/utils/sessionUtils.h"
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
RnnStateBuffers::RnnStateBuffers()
|
|
{
|
|
rnnStates = nullptr;
|
|
convStates = nullptr;
|
|
convStatesAlt = nullptr;
|
|
slotMappingHost = nullptr;
|
|
slotMappingDevice = nullptr;
|
|
rnnStatePtrs = nullptr;
|
|
convStatePtrs = nullptr;
|
|
}
|
|
|
|
RnnStateBuffers::RnnStateBuffers(
|
|
TllmRuntime const& runtime, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig)
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
TLLM_CHECK(modelConfig.isRnnBased());
|
|
TLLM_CHECK_WITH_INFO(modelConfig.hasRnnConfig(), "RNN only support Mamba1/Mamba2/RecurrentGemma now.");
|
|
auto maxBatchSize = modelConfig.getMaxBatchSize();
|
|
auto maxBeamWidth = modelConfig.getMaxBeamWidth();
|
|
auto maxBatchBeam = maxBatchSize * maxBeamWidth;
|
|
auto rnnConfig = modelConfig.getRnnConfig();
|
|
TLLM_CHECK_WITH_INFO(rnnConfig.has_value(), "RnnStateBuffers should be used with rnnConfig.");
|
|
mConvKernel = rnnConfig->convKernel;
|
|
mStateSize = rnnConfig->stateSize;
|
|
mRnnHiddenSize = rnnConfig->rnnHiddenSize;
|
|
mRnnHeadSize = rnnConfig->rnnHeadSize;
|
|
mRnnConvDimSize = rnnConfig->rnnConvDimSize;
|
|
auto dType = modelConfig.getDataType();
|
|
auto const localNbLayers = modelConfig.getNbRnnLayers(worldConfig.getPipelineParallelism());
|
|
mLocalNbLayers = localNbLayers;
|
|
mMaxBeamWidth = maxBeamWidth;
|
|
mUseMambaConv1dPlugin = modelConfig.useMambaConv1dPlugin();
|
|
auto const rnnStatesShape = [&]()
|
|
{
|
|
if (mRnnHeadSize > 0)
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{localNbLayers * maxBatchBeam, mRnnHiddenSize / mRnnHeadSize, mStateSize, mRnnHeadSize});
|
|
}
|
|
else
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{localNbLayers * maxBatchBeam, mStateSize, mRnnHiddenSize});
|
|
}
|
|
}();
|
|
auto const convStatesShape = [&]()
|
|
{
|
|
if (mUseMambaConv1dPlugin)
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{localNbLayers * maxBatchBeam, mConvKernel - 1, mRnnConvDimSize});
|
|
}
|
|
else
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{localNbLayers * maxBatchBeam, mRnnConvDimSize, mConvKernel - 1});
|
|
}
|
|
}();
|
|
auto& bufferManager = runtime.getBufferManager();
|
|
auto const isRecurrentGemma = modelConfig.getModelVariant() == ModelConfig::ModelVariant::kRecurrentGemma;
|
|
auto stateDType = isRecurrentGemma ? nvinfer1::DataType::kFLOAT : dType;
|
|
rnnStates = bufferManager.gpu(rnnStatesShape, stateDType);
|
|
convStates = bufferManager.gpu(convStatesShape, dType);
|
|
convStatesAlt = bufferManager.gpu(convStatesShape, dType);
|
|
|
|
if (modelConfig.usePagedState())
|
|
{
|
|
auto slotMappingShape = ITensor::makeShape({maxBatchSize});
|
|
auto statePtrsShape = ITensor::makeShape({localNbLayers});
|
|
slotMappingDevice = bufferManager.gpu(slotMappingShape, nvinfer1::DataType::kINT32);
|
|
slotMappingHost = BufferManager::cpu(slotMappingShape, nvinfer1::DataType::kINT32);
|
|
rnnStatePtrs = BufferManager::cpu(statePtrsShape, TRTDataType<void*>::value);
|
|
convStatePtrs = BufferManager::cpu(statePtrsShape, TRTDataType<void*>::value);
|
|
}
|
|
else
|
|
{
|
|
slotMappingHost = nullptr;
|
|
slotMappingDevice = nullptr;
|
|
rnnStatePtrs = nullptr;
|
|
convStatePtrs = nullptr;
|
|
}
|
|
|
|
reshape(maxBatchSize);
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void RnnStateBuffers::reshape(SizeType32 batchSize)
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
auto const rnnStatesShape = [&]()
|
|
{
|
|
if (mRnnHeadSize > 0)
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{mLocalNbLayers * batchSize * mMaxBeamWidth, mRnnHiddenSize / mRnnHeadSize, mStateSize, mRnnHeadSize});
|
|
}
|
|
else
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{mLocalNbLayers * batchSize * mMaxBeamWidth, mStateSize, mRnnHiddenSize});
|
|
}
|
|
}();
|
|
auto const convStatesShape = [&]()
|
|
{
|
|
if (mUseMambaConv1dPlugin)
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{mLocalNbLayers * batchSize * mMaxBeamWidth, mConvKernel - 1, mRnnConvDimSize});
|
|
}
|
|
else
|
|
{
|
|
return tensorrt_llm::runtime::ITensor::makeShape(
|
|
{mLocalNbLayers * batchSize * mMaxBeamWidth, mRnnConvDimSize, mConvKernel - 1});
|
|
}
|
|
}();
|
|
rnnStates->reshape(rnnStatesShape);
|
|
convStates->reshape(convStatesShape);
|
|
convStatesAlt->reshape(convStatesShape);
|
|
|
|
rnnState.resize(mLocalNbLayers);
|
|
convState.resize(mLocalNbLayers);
|
|
convStateAlt.resize(mLocalNbLayers);
|
|
for (int i = 0; i < mLocalNbLayers; i++)
|
|
{
|
|
size_t offset = batchSize * mMaxBeamWidth * i;
|
|
rnnState[i] = tensorrt_llm::runtime::ITensor::slice(rnnStates, offset, batchSize * mMaxBeamWidth);
|
|
convState[i] = tensorrt_llm::runtime::ITensor::slice(convStates, offset, batchSize * mMaxBeamWidth);
|
|
convStateAlt[i] = tensorrt_llm::runtime::ITensor::slice(convStatesAlt, offset, batchSize * mMaxBeamWidth);
|
|
}
|
|
if (slotMappingDevice != nullptr)
|
|
{
|
|
TLLM_CHECK(slotMappingHost != nullptr);
|
|
TLLM_CHECK(rnnStates != nullptr && convStates != nullptr);
|
|
TLLM_CHECK(rnnStatePtrs != nullptr && convStatePtrs != nullptr);
|
|
|
|
auto slotMappingShape = ITensor::makeShape({batchSize});
|
|
slotMappingDevice->reshape(slotMappingShape);
|
|
slotMappingHost->reshape(slotMappingShape);
|
|
|
|
int* slotMapping = static_cast<int*>(slotMappingHost->data());
|
|
for (int b = 0; b < batchSize; b++)
|
|
{
|
|
slotMapping[b] = b;
|
|
}
|
|
fillStatePtrs();
|
|
}
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void RnnStateBuffers::fillStatePtrs()
|
|
{
|
|
auto statePtrsShape = ITensor::makeShape({mLocalNbLayers});
|
|
rnnStatePtrs->reshape(statePtrsShape);
|
|
convStatePtrs->reshape(statePtrsShape);
|
|
|
|
rnnStatePtr.resize(mLocalNbLayers);
|
|
convStatePtr.resize(mLocalNbLayers);
|
|
|
|
auto* rnnStatePtrArray = bufferCast<void*>(*rnnStatePtrs);
|
|
auto* convStatePtrArray = bufferCast<void*>(*convStatePtrs);
|
|
|
|
for (int i = 0; i < mLocalNbLayers; i++)
|
|
{
|
|
rnnStatePtrArray[i] = rnnState[i]->data();
|
|
convStatePtrArray[i] = convState[i]->data();
|
|
rnnStatePtr[i] = tensorrt_llm::runtime::ITensor::slice(rnnStatePtrs, i, 1);
|
|
convStatePtr[i] = tensorrt_llm::runtime::ITensor::slice(convStatePtrs, i, 1);
|
|
}
|
|
}
|
|
|
|
void RnnStateBuffers::reshape(
|
|
GenerationConfig const& generationConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
|
|
{
|
|
auto const batchSize = generationConfig.batchSize;
|
|
|
|
reshape(batchSize);
|
|
}
|
|
|
|
void RnnStateBuffers::reset(BufferManager& manager)
|
|
{
|
|
// This is not need in Plugin path, but may be needed for OOTB path.
|
|
manager.setZero(*rnnStates);
|
|
manager.setZero(*convStates);
|
|
manager.setZero(*convStatesAlt);
|
|
}
|
|
|
|
RnnStateBuffers RnnStateBuffers::sliceTo(SizeType32 offset, SizeType32 size)
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
RnnStateBuffers buffers;
|
|
buffers.rnnState = utils::sliceBufferVector(rnnState, offset, size);
|
|
buffers.convState = utils::sliceBufferVector(convState, offset, size);
|
|
buffers.convStateAlt = utils::sliceBufferVector(convStateAlt, offset, size);
|
|
|
|
if (slotMappingDevice != nullptr)
|
|
{
|
|
TLLM_CHECK(slotMappingHost != nullptr);
|
|
TLLM_CHECK(rnnStates != nullptr && convStates != nullptr);
|
|
TLLM_CHECK(rnnStatePtrs != nullptr && convStatePtrs != nullptr);
|
|
buffers.slotMappingHost = ITensor::slice(slotMappingHost, offset, size);
|
|
buffers.slotMappingDevice = ITensor::slice(slotMappingHost, offset, size);
|
|
int* slotMapping = static_cast<int*>(buffers.slotMappingHost->data());
|
|
for (int b = 0; b < size; b++)
|
|
{
|
|
slotMapping[b] = b;
|
|
}
|
|
buffers.fillStatePtrs();
|
|
}
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
return buffers;
|
|
}
|
|
|
|
void RnnStateBuffers::prepareContextStep(RuntimeBuffers* runtimeBuffers, BufferManager& manager)
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
SizeType32 const batchSize = runtimeBuffers->generationConfig.batchSize;
|
|
auto& requestTypes = runtimeBuffers->requestTypes;
|
|
auto RequestTypesPtr = bufferCast<int32_t>(*requestTypes);
|
|
TLLM_CHECK(requestTypes->getSize() == static_cast<std::size_t>(batchSize));
|
|
std::fill_n(RequestTypesPtr, batchSize, 0);
|
|
|
|
manager.setZero(*convStates);
|
|
if (slotMappingDevice != nullptr)
|
|
{
|
|
manager.copy(*slotMappingHost, *slotMappingDevice);
|
|
}
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void RnnStateBuffers::tile(RuntimeBuffers* runtimeBuffers, BufferManager& manager, ModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig)
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
TLLM_CHECK_WITH_INFO(false, "Beam search for mamba is not supported now.");
|
|
auto& generationConfig = runtimeBuffers->generationConfig;
|
|
auto& logits = runtimeBuffers->logits;
|
|
auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice;
|
|
auto& contextLengthsHost = runtimeBuffers->contextLengthsHost;
|
|
auto const beamWidth = generationConfig.beamWidth;
|
|
TLLM_CHECK_WITH_INFO(beamWidth > 1, "Tiling is only necessary for beam search.");
|
|
|
|
// Note: If computeContextLogits is true, the copy/expansion is performed in gatherLastTokenLogits.
|
|
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
|
|
{
|
|
// logits needs beamWidth in second dimension
|
|
auto logitsShape = logits->getShape();
|
|
logitsShape.d[1] *= beamWidth;
|
|
utils::tileBufferReplace(logits, beamWidth, manager);
|
|
logits->reshape(logitsShape);
|
|
}
|
|
|
|
utils::tileBufferReplace(contextLengthsDevice, beamWidth, manager);
|
|
utils::tileCpuBufferReplace(contextLengthsHost, beamWidth);
|
|
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void RnnStateBuffers::postContextStep(RuntimeBuffers* runtimeBuffers, std::vector<RuntimeBuffers> const& contextBuffers,
|
|
BufferManager& manager, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
auto& generationConfig = runtimeBuffers->generationConfig;
|
|
auto& requestTypes = runtimeBuffers->requestTypes;
|
|
auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice;
|
|
auto& outputLengths = runtimeBuffers->outputLengths;
|
|
auto& lastTokenIds = runtimeBuffers->lastTokenIds;
|
|
auto const batchSize = generationConfig.batchSize;
|
|
auto const beamWidth = generationConfig.beamWidth;
|
|
requestTypes->reshape(ITensor::makeShape({batchSize * beamWidth}));
|
|
auto hostRequestTypes = bufferCast<int32_t>(*requestTypes);
|
|
std::fill_n(hostRequestTypes, requestTypes->getSize(), 1);
|
|
|
|
if (modelConfig.computeContextLogits())
|
|
{
|
|
runtimeBuffers->gatherLastTokenLogits(manager, modelConfig, worldConfig);
|
|
}
|
|
|
|
if (beamWidth > 1)
|
|
{
|
|
tile(runtimeBuffers, manager, modelConfig, worldConfig);
|
|
}
|
|
|
|
// use output lengths after context step
|
|
manager.copy(*contextLengthsDevice, *outputLengths);
|
|
// no need to copy data in lastTokenIds because it is overwritten in prepareNextStep
|
|
lastTokenIds->reshape(ITensor::makeShape({batchSize * beamWidth}));
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void RnnStateBuffers::getRuntimeBuffers(RuntimeBuffers const* runtimeBuffers, TensorMap& inputBuffers,
|
|
TensorMap& outputBuffers, SizeType32 const step, TensorPtr const& inputIds, ModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig) const
|
|
{
|
|
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
|
|
auto& logits = runtimeBuffers->logits;
|
|
auto& hiddenStates = runtimeBuffers->hiddenStates;
|
|
auto& lastTokenIds = runtimeBuffers->lastTokenIds;
|
|
auto& requestTypes = runtimeBuffers->requestTypes;
|
|
|
|
if (worldConfig.isLastPipelineParallelRank())
|
|
{
|
|
// feed a view to TensorRT runtime so reshaping does not change logits buffer
|
|
outputBuffers.insert_or_assign("logits", ITensor::view(logits));
|
|
}
|
|
else
|
|
{
|
|
outputBuffers.insert_or_assign("hidden_states_output", hiddenStates);
|
|
}
|
|
|
|
if (worldConfig.isFirstPipelineParallelRank())
|
|
{
|
|
inputBuffers.insert_or_assign("input_ids", inputIds);
|
|
}
|
|
else
|
|
{
|
|
inputBuffers.insert_or_assign("hidden_states_input", hiddenStates);
|
|
}
|
|
|
|
inputBuffers.insert_or_assign("last_token_ids", lastTokenIds);
|
|
|
|
auto const localNbLayers = modelConfig.getNbRnnLayers(worldConfig.getPipelineParallelism());
|
|
auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
|
|
auto const& layerTypes = modelConfig.getLayerTypes();
|
|
|
|
if (modelConfig.usePagedState())
|
|
{
|
|
inputBuffers.insert_or_assign("slot_mapping", slotMappingDevice);
|
|
utils::insertTensorVector(inputBuffers, "conv_state_ptr_", convStatePtr, firstLayerId, layerTypes,
|
|
ModelConfig::LayerType::kRECURRENT);
|
|
utils::insertTensorVector(
|
|
inputBuffers, "rnn_state_ptr_", rnnStatePtr, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT);
|
|
}
|
|
else
|
|
{
|
|
utils::insertTensorVector(inputBuffers, "past_conv_state_", (step % 2) ? convState : convStateAlt, firstLayerId,
|
|
layerTypes, ModelConfig::LayerType::kRECURRENT);
|
|
utils::insertTensorVector(outputBuffers, "present_conv_state_", (step % 2) ? convStateAlt : convState,
|
|
firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT);
|
|
utils::insertTensorVector(
|
|
inputBuffers, "past_rnn_state_", rnnState, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT);
|
|
utils::insertTensorVector(outputBuffers, "present_rnn_state_", rnnState, firstLayerId, layerTypes,
|
|
ModelConfig::LayerType::kRECURRENT);
|
|
}
|
|
|
|
inputBuffers.insert_or_assign("host_request_types", requestTypes);
|
|
inputBuffers.insert_or_assign("host_context_lengths", runtimeBuffers->contextLengthsHost);
|
|
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
|
|
}
|