TensorRT-LLMs/installation/build-from-source-linux.html
2025-12-10 03:07:23 +00:00

920 lines
59 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Building from Source Code on Linux &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'installation/build-from-source-linux';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc5';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../_static/favicon.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="LLM Examples" href="../examples/llm_api_examples.html" />
<link rel="prev" title="Installing on Linux via pip" href="linux.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc5" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">Installation</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-on-trtllm.html">Deployment Guide for Qwen3 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-kimi-k2-thinking-on-trtllm.html">Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/guided-decoding.html">Guided Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/helix.html">Helix Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kv-cache-connector.html">KV Cache Connector</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Installation</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Building from Source Code on Linux</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section class="tex2jax_ignore mathjax_ignore" id="building-from-source-code-on-linux">
<span id="build-from-source-linux"></span><h1>Building from Source Code on Linux<a class="headerlink" href="#building-from-source-code-on-linux" title="Link to this heading">#</a></h1>
<p>This document provides instructions for building TensorRT LLM from source code on Linux. Building from source is recommended for achieving optimal performance, enabling debugging capabilities, or when you need a different <a class="reference external" href="https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html">GNU CXX11 ABI</a> configuration than what is available in the pre-built TensorRT LLM wheel on PyPI. Note that the current pre-built TensorRT LLM wheel on PyPI is linked against PyTorch 2.7.0 and subsequent versions, which uses the new CXX11 ABI.</p>
<section id="prerequisites">
<h2>Prerequisites<a class="headerlink" href="#prerequisites" title="Link to this heading">#</a></h2>
<p>Use <a class="reference external" href="https://www.docker.com">Docker</a> to build and run TensorRT LLM. Instructions to install an environment to run Docker containers for the NVIDIA platform can be found <a class="reference external" href="https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html">here</a>.</p>
<p>If you intend to build any TensortRT-LLM artifacts, such as any of the container images (note that there exist pre-built <a class="reference internal" href="#build-from-source-tip-develop-container">develop</a> and <a class="reference internal" href="#build-from-source-tip-release-container">release</a> container images in NGC), or the TensorRT LLM Python wheel, you first need to clone the TensorRT LLM repository:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># TensorRT LLM uses git-lfs, which needs to be installed in advance.</span>
apt-get<span class="w"> </span>update<span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span>apt-get<span class="w"> </span>-y<span class="w"> </span>install<span class="w"> </span>git<span class="w"> </span>git-lfs
git<span class="w"> </span>lfs<span class="w"> </span>install
git<span class="w"> </span>clone<span class="w"> </span>https://github.com/NVIDIA/TensorRT-LLM.git
<span class="nb">cd</span><span class="w"> </span>TensorRT-LLM
git<span class="w"> </span>submodule<span class="w"> </span>update<span class="w"> </span>--init<span class="w"> </span>--recursive
git<span class="w"> </span>lfs<span class="w"> </span>pull
</pre></div>
</div>
</section>
<section id="building-a-tensorrt-llm-docker-image">
<h2>Building a TensorRT LLM Docker Image<a class="headerlink" href="#building-a-tensorrt-llm-docker-image" title="Link to this heading">#</a></h2>
<p>There are two options to create a TensorRT LLM Docker image. The approximate disk space required to build the image is 63 GB.</p>
<section id="option-1-build-tensorrt-llm-in-one-step">
<h3>Option 1: Build TensorRT LLM in One Step<a class="headerlink" href="#option-1-build-tensorrt-llm-in-one-step" title="Link to this heading">#</a></h3>
<div class="admonition tip" id="build-from-source-tip-release-container">
<p class="admonition-title">Tip</p>
<p>If you just want to run TensorRT LLM, you can instead <a class="reference internal" href="containers.html#containers"><span class="std std-ref">use the pre-built TensorRT LLM Release container images</span></a>.</p>
</div>
<p>TensorRT LLM contains a simple command to create a Docker image. Note that if you plan to develop on TensorRT LLM, we recommend using <a class="reference internal" href="#option-2-build-tensorrt-llm-step-by-step">Option 2: Build TensorRT LLM Step-By-Step</a>.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>make<span class="w"> </span>-C<span class="w"> </span>docker<span class="w"> </span>release_build
</pre></div>
</div>
<p>You can add the <code class="docutils literal notranslate"><span class="pre">CUDA_ARCHS=&quot;&lt;list</span> <span class="pre">of</span> <span class="pre">architectures</span> <span class="pre">in</span> <span class="pre">CMake</span> <span class="pre">format&gt;&quot;</span></code> optional argument to specify which architectures should be supported by TensorRT LLM. It restricts the supported GPU architectures but helps reduce compilation time:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># Restrict the compilation to Ada and Hopper architectures.</span>
make<span class="w"> </span>-C<span class="w"> </span>docker<span class="w"> </span>release_build<span class="w"> </span><span class="nv">CUDA_ARCHS</span><span class="o">=</span><span class="s2">&quot;89-real;90-real&quot;</span>
</pre></div>
</div>
<p>After the image is built, the Docker container can be run.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>make<span class="w"> </span>-C<span class="w"> </span>docker<span class="w"> </span>release_run
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">make</span></code> command supports the <code class="docutils literal notranslate"><span class="pre">LOCAL_USER=1</span></code> argument to switch to the local user account instead of <code class="docutils literal notranslate"><span class="pre">root</span></code> inside the container. The examples of TensorRT LLM are installed in the <code class="docutils literal notranslate"><span class="pre">/app/tensorrt_llm/examples</span></code> directory.</p>
<p>Since TensorRT LLM has been built and installed, you can skip the remaining steps.</p>
</section>
<section id="option-2-container-for-building-tensorrt-llm-step-by-step">
<span id="option-2-build-tensorrt-llm-step-by-step"></span><h3>Option 2: Container for building TensorRT LLM Step-by-Step<a class="headerlink" href="#option-2-container-for-building-tensorrt-llm-step-by-step" title="Link to this heading">#</a></h3>
<p>If you are looking for more flexibility, TensorRT LLM has commands to create and run a development container in which TensorRT LLM can be built.</p>
<div class="admonition tip" id="build-from-source-tip-develop-container">
<p class="admonition-title">Tip</p>
<p>As an alternative to building the container image following the instructions below,
you can pull a pre-built <a class="reference external" href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tensorrt-llm/containers/devel">TensorRT LLM Develop container image</a> from NGC (see <a class="reference internal" href="containers.html#containers"><span class="std std-ref">here</span></a> for information on container tags).
Follow the linked catalog entry to enter a new container based on the pre-built container image, with the TensorRT source repository mounted into it. You can then skip this section and continue straight to <a class="reference internal" href="#build-tensorrt-llm">building TensorRT LLM</a>.</p>
</div>
<p><strong>On systems with GNU <code class="docutils literal notranslate"><span class="pre">make</span></code></strong></p>
<ol class="arabic">
<li><p>Create a Docker image for development. The image will be tagged locally with <code class="docutils literal notranslate"><span class="pre">tensorrt_llm/devel:latest</span></code>.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>make<span class="w"> </span>-C<span class="w"> </span>docker<span class="w"> </span>build
</pre></div>
</div>
</li>
<li><p>Run the container.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>make<span class="w"> </span>-C<span class="w"> </span>docker<span class="w"> </span>run
</pre></div>
</div>
<p>If you prefer to work with your own user account in that container, instead of <code class="docutils literal notranslate"><span class="pre">root</span></code>, add the <code class="docutils literal notranslate"><span class="pre">LOCAL_USER=1</span></code> option.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>make<span class="w"> </span>-C<span class="w"> </span>docker<span class="w"> </span>run<span class="w"> </span><span class="nv">LOCAL_USER</span><span class="o">=</span><span class="m">1</span>
</pre></div>
</div>
</li>
</ol>
<p>If you wish to use enroot instead of docker, then you can build a sqsh file that has the identical environment as the development image <code class="docutils literal notranslate"><span class="pre">tensorrt_llm/devel:latest</span></code> as follows.</p>
<ol class="arabic">
<li><p>Allocate a compute node:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>salloc<span class="w"> </span>--nodes<span class="o">=</span><span class="m">1</span>
</pre></div>
</div>
</li>
<li><p>Create a sqsh file with essential TensorRT LLM dependencies installed</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># Using default sqsh filename (enroot/tensorrt_llm.devel.sqsh)</span>
make<span class="w"> </span>-C<span class="w"> </span>enroot<span class="w"> </span>build_sqsh
<span class="c1"># Or specify a custom path (optional)</span>
make<span class="w"> </span>-C<span class="w"> </span>enroot<span class="w"> </span>build_sqsh<span class="w"> </span><span class="nv">SQSH_PATH</span><span class="o">=</span>/path/to/dev_trtllm_image.sqsh
</pre></div>
</div>
</li>
<li><p>Once this squash file is ready, you can follow the steps under <a class="reference internal" href="#build-tensorrt-llm">Build TensorRT LLM</a>by launching an enroot sandbox from <code class="docutils literal notranslate"><span class="pre">dev_trtllm_image.sqsh</span></code>. To do this, proceed as follows:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nb">export</span><span class="w"> </span><span class="nv">SQSH_PATH</span><span class="o">=</span>/path/to/dev_trtllm_image.sqsh
<span class="c1"># Start a pseudo terminal for interactive session</span>
make<span class="w"> </span>-C<span class="w"> </span>enroot<span class="w"> </span>run_sqsh
<span class="c1"># Or, you could run commands directly</span>
make<span class="w"> </span>-C<span class="w"> </span>enroot<span class="w"> </span>run_sqsh<span class="w"> </span><span class="nv">RUN_CMD</span><span class="o">=</span><span class="s2">&quot;python3 scripts/build_wheel.py&quot;</span>
</pre></div>
</div>
</li>
</ol>
<p><strong>On systems without GNU <code class="docutils literal notranslate"><span class="pre">make</span></code></strong></p>
<ol class="arabic">
<li><p>Create a Docker image for development.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>docker<span class="w"> </span>build<span class="w"> </span>--pull<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--target<span class="w"> </span>devel<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--file<span class="w"> </span>docker/Dockerfile.multi<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--tag<span class="w"> </span>tensorrt_llm/devel:latest<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>.
</pre></div>
</div>
</li>
<li><p>Run the container.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>docker<span class="w"> </span>run<span class="w"> </span>--rm<span class="w"> </span>-it<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--ipc<span class="o">=</span>host<span class="w"> </span>--ulimit<span class="w"> </span><span class="nv">memlock</span><span class="o">=</span>-1<span class="w"> </span>--ulimit<span class="w"> </span><span class="nv">stack</span><span class="o">=</span><span class="m">67108864</span><span class="w"> </span>--gpus<span class="o">=</span>all<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--volume<span class="w"> </span><span class="si">${</span><span class="nv">PWD</span><span class="si">}</span>:/code/tensorrt_llm<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--workdir<span class="w"> </span>/code/tensorrt_llm<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>tensorrt_llm/devel:latest
</pre></div>
</div>
<p>Note: please make sure to set <code class="docutils literal notranslate"><span class="pre">--ipc=host</span></code> as a docker run argument to avoid <code class="docutils literal notranslate"><span class="pre">Bus</span> <span class="pre">error</span> <span class="pre">(core</span> <span class="pre">dumped)</span></code>.</p>
</li>
</ol>
<p>Once inside the container, follow the next steps to build TensorRT LLM from source.</p>
</section>
<section id="advanced-topics">
<h3>Advanced topics<a class="headerlink" href="#advanced-topics" title="Link to this heading">#</a></h3>
<p>For more information on building and running various TensorRT LLM container images,
check <a class="github reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/docker">NVIDIA/TensorRT-LLM</a>.</p>
</section>
</section>
<section id="build-tensorrt-llm">
<h2>Build TensorRT LLM<a class="headerlink" href="#build-tensorrt-llm" title="Link to this heading">#</a></h2>
<section id="option-1-full-build-with-c-compilation">
<h3>Option 1: Full Build with C++ Compilation<a class="headerlink" href="#option-1-full-build-with-c-compilation" title="Link to this heading">#</a></h3>
<p>The following command compiles the C++ code and packages the compiled libraries along with the Python files into a wheel. When developing C++ code, you need this full build command to apply your code changes.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># To build the TensorRT LLM code.</span>
python3<span class="w"> </span>./scripts/build_wheel.py
</pre></div>
</div>
<p>Once the wheel is built, install it by:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>./build/tensorrt_llm*.whl
</pre></div>
</div>
<p>Alternatively, you can use editable installation, which is convenient if you also develop Python code.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>-e<span class="w"> </span>.
</pre></div>
</div>
<p>By default, <code class="docutils literal notranslate"><span class="pre">build_wheel.py</span></code> enables incremental builds. To clean the build
directory, add the <code class="docutils literal notranslate"><span class="pre">--clean</span></code> option:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3<span class="w"> </span>./scripts/build_wheel.py<span class="w"> </span>--clean
</pre></div>
</div>
<p>It is possible to restrict the compilation of TensorRT LLM to specific CUDA
architectures. For that purpose, the <code class="docutils literal notranslate"><span class="pre">build_wheel.py</span></code> script accepts a
semicolon separated list of CUDA architecture as shown in the following
example:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># Build TensorRT LLM for Ampere.</span>
python3<span class="w"> </span>./scripts/build_wheel.py<span class="w"> </span>--cuda_architectures<span class="w"> </span><span class="s2">&quot;80-real;86-real&quot;</span>
</pre></div>
</div>
<p>To use the C++ benchmark scripts under <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/e4c7078/benchmarks/cpp/">benchmark/cpp</a>, for example <code class="docutils literal notranslate"><span class="pre">gptManagerBenchmark.cpp</span></code>, add the <code class="docutils literal notranslate"><span class="pre">--benchmarks</span></code> option:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3<span class="w"> </span>./scripts/build_wheel.py<span class="w"> </span>--benchmarks
</pre></div>
</div>
<p>Refer to the <a class="reference internal" href="../legacy/reference/support-matrix.html#support-matrix-hardware"><span class="std std-ref">Hardware</span></a> section for a list of architectures.</p>
<section id="building-the-python-bindings-for-the-c-runtime">
<h4>Building the Python Bindings for the C++ Runtime<a class="headerlink" href="#building-the-python-bindings-for-the-c-runtime" title="Link to this heading">#</a></h4>
<p>The C++ Runtime can be exposed to Python via bindings. This feature can be turned on through the default build options.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3<span class="w"> </span>./scripts/build_wheel.py
</pre></div>
</div>
<p>After installing, the resulting wheel as described above, the C++ Runtime bindings will be available in
the <code class="docutils literal notranslate"><span class="pre">tensorrt_llm.bindings</span></code> package. Running <code class="docutils literal notranslate"><span class="pre">help</span></code> on this package in a Python interpreter will provide on overview of the
relevant classes. The associated unit tests should also be consulted for understanding the API.</p>
<p>This feature will not be enabled when <a class="reference internal" href="#link-with-the-tensorrt-llm-c-runtime"><code class="docutils literal notranslate"><span class="pre">building</span> <span class="pre">only</span> <span class="pre">the</span> <span class="pre">C++</span> <span class="pre">runtime</span></code></a>.</p>
</section>
<section id="linking-with-the-tensorrt-llm-c-runtime">
<span id="link-with-the-tensorrt-llm-c-runtime"></span><h4>Linking with the TensorRT LLM C++ Runtime<a class="headerlink" href="#linking-with-the-tensorrt-llm-c-runtime" title="Link to this heading">#</a></h4>
<p>The <code class="docutils literal notranslate"><span class="pre">build_wheel.py</span></code> script will also compile the library containing the C++ runtime of TensorRT LLM. If Python support and <code class="docutils literal notranslate"><span class="pre">torch</span></code> modules are not required, the script provides the option <code class="docutils literal notranslate"><span class="pre">--cpp_only</span></code> which restricts the build to the C++ runtime only.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python3<span class="w"> </span>./scripts/build_wheel.py<span class="w"> </span>--cuda_architectures<span class="w"> </span><span class="s2">&quot;80-real;86-real&quot;</span><span class="w"> </span>--cpp_only<span class="w"> </span>--clean
</pre></div>
</div>
<p>This is particularly useful for avoiding linking issues that may arise with older versions of <code class="docutils literal notranslate"><span class="pre">torch</span></code> (prior to 2.7.0) due to the <a class="reference external" href="https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html">Dual ABI support in GCC</a>. The <code class="docutils literal notranslate"><span class="pre">--clean</span></code> option removes the build directory before starting a new build. By default, TensorRT LLM uses <code class="docutils literal notranslate"><span class="pre">cpp/build</span></code> as the build directory, but you can specify a different location with the <code class="docutils literal notranslate"><span class="pre">--build_dir</span></code> option. For a complete list of available build options, run <code class="docutils literal notranslate"><span class="pre">python3</span> <span class="pre">./scripts/build_wheel.py</span> <span class="pre">--help</span></code>.</p>
<p>The shared library can be found in the following location:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>cpp/build/tensorrt_llm/libtensorrt_llm.so
</pre></div>
</div>
<p>In addition, link against the library containing the LLM plugins for TensorRT.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>cpp/build/tensorrt_llm/plugins/libnvinfer_plugin_tensorrt_llm.so
</pre></div>
</div>
</section>
<section id="supported-c-header-files">
<h4>Supported C++ Header Files<a class="headerlink" href="#supported-c-header-files" title="Link to this heading">#</a></h4>
<p>When using TensorRT LLM, you need to add the <code class="docutils literal notranslate"><span class="pre">cpp</span></code> and <code class="docutils literal notranslate"><span class="pre">cpp/include</span></code> directories to the projects include paths. Only header files contained in <code class="docutils literal notranslate"><span class="pre">cpp/include</span></code> are part of the supported API and may be directly included. Other headers contained under <code class="docutils literal notranslate"><span class="pre">cpp</span></code> should not be included directly since they might change in future versions.</p>
</section>
</section>
<section id="option-2-python-only-build-without-c-compilation">
<h3>Option 2: Python-Only Build without C++ Compilation<a class="headerlink" href="#option-2-python-only-build-without-c-compilation" title="Link to this heading">#</a></h3>
<p>If you only need to modify Python code, it is possible to package and install TensorRT LLM without compilation.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># Package TensorRT LLM wheel.</span>
<span class="nv">TRTLLM_USE_PRECOMPILED</span><span class="o">=</span><span class="m">1</span><span class="w"> </span>pip<span class="w"> </span>wheel<span class="w"> </span>.<span class="w"> </span>--no-deps<span class="w"> </span>--wheel-dir<span class="w"> </span>./build
<span class="c1"># Install TensorRT LLM wheel.</span>
pip<span class="w"> </span>install<span class="w"> </span>./build/tensorrt_llm*.whl
</pre></div>
</div>
<p>Alternatively, you can use editable installation for convenience during Python development.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nv">TRTLLM_USE_PRECOMPILED</span><span class="o">=</span><span class="m">1</span><span class="w"> </span>pip<span class="w"> </span>install<span class="w"> </span>-e<span class="w"> </span>.
</pre></div>
</div>
<p>Setting <code class="docutils literal notranslate"><span class="pre">TRTLLM_USE_PRECOMPILED=1</span></code> enables downloading a prebuilt wheel of the version specified in <code class="docutils literal notranslate"><span class="pre">tensorrt_llm/version.py</span></code>, extracting compiled libraries into your current directory, thus skipping C++ compilation. This version can be overridden by specifying <code class="docutils literal notranslate"><span class="pre">TRTLLM_USE_PRECOMPILED=x.y.z</span></code>.</p>
<p>You can specify a custom URL or local path for downloading using <code class="docutils literal notranslate"><span class="pre">TRTLLM_PRECOMPILED_LOCATION</span></code>. For example, to use version 0.16.0 from PyPI:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nv">TRTLLM_PRECOMPILED_LOCATION</span><span class="o">=</span>https://pypi.nvidia.com/tensorrt-llm/tensorrt_llm-0.16.0-cp312-cp312-linux_x86_64.whl<span class="w"> </span>pip<span class="w"> </span>install<span class="w"> </span>-e<span class="w"> </span>.
</pre></div>
</div>
<section id="known-limitations">
<h4>Known Limitations<a class="headerlink" href="#known-limitations" title="Link to this heading">#</a></h4>
<p>When using <code class="docutils literal notranslate"><span class="pre">TRTLLM_PRECOMPILED_LOCATION</span></code>, ensure that your wheel is compiled based on the same version of C++ code as your current directory; any discrepancies may lead to compatibility issues.</p>
</section>
</section>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="linux.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></p>
</div>
</a>
<a class="right-next"
href="../examples/llm_api_examples.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">LLM Examples</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#prerequisites">Prerequisites</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#building-a-tensorrt-llm-docker-image">Building a TensorRT LLM Docker Image</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#option-1-build-tensorrt-llm-in-one-step">Option 1: Build TensorRT LLM in One Step</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#option-2-container-for-building-tensorrt-llm-step-by-step">Option 2: Container for building TensorRT LLM Step-by-Step</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#advanced-topics">Advanced topics</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#build-tensorrt-llm">Build TensorRT LLM</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#option-1-full-build-with-c-compilation">Option 1: Full Build with C++ Compilation</a><ul class="nav section-nav flex-column">
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#building-the-python-bindings-for-the-c-runtime">Building the Python Bindings for the C++ Runtime</a></li>
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#linking-with-the-tensorrt-llm-c-runtime">Linking with the TensorRT LLM C++ Runtime</a></li>
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#supported-c-header-files">Supported C++ Header Files</a></li>
</ul>
</li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#option-2-python-only-build-without-c-compilation">Option 2: Python-Only Build without C++ Compilation</a><ul class="nav section-nav flex-column">
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#known-limitations">Known Limitations</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on December 07, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/e4c7078">e4c7078</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>