TensorRT-LLMs/tests/unittest/_torch/speculative/test_eagle3.py
Ziyi Xiong 66030ef815
[TRTLLM-6452][feat]: Two-model engine KV cache reuse support (#6133)
Signed-off-by: ziyixiong-nv <fxiong@nvidia.com>
Signed-off-by: ziyixiong-nv <219238287+ziyixiong-nv@users.noreply.github.com>
2025-07-19 13:17:15 +08:00

113 lines
4.1 KiB
Python

import os
import sys
import unittest
import pytest
import torch
from utils.llm_data import llm_models_root
from tensorrt_llm import LLM, SamplingParams
from tensorrt_llm.llmapi import (CudaGraphConfig, EagleDecodingConfig,
KvCacheConfig)
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
@pytest.mark.parametrize(
"use_cuda_graph,attn_backend,disable_overlap_scheduler,enable_block_reuse,use_one_model",
[
[True, "TRTLLM", True, False, False],
[False, "TRTLLM", True, False, False],
[True, "TRTLLM", True, True, False],
[False, "TRTLLM", True, True, False],
[True, "FLASHINFER", True, False, False],
[False, "FLASHINFER", True, False, False],
[False, "TRTLLM", False, True, True],
[True, "TRTLLM", False, True, True],
])
@pytest.mark.high_cuda_memory
def test_llama_eagle3(use_cuda_graph: bool, attn_backend: str,
disable_overlap_scheduler: bool, enable_block_reuse: bool,
use_one_model: bool):
# Eagle3 one model works with overlap scheduler and block reuse.
total_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
if total_mem_gb < 35:
pytest.skip("Not enough memory to load target + draft model")
models_path = llm_models_root()
eagle_model_dir = f"{models_path}/EAGLE3-LLaMA3.1-Instruct-8B"
target_model_dir = f"{models_path}/llama-3.1-model/Llama-3.1-8B-Instruct"
# bs > 1 gives non-deterministic when doing IFB. There are slight chances
# that ref and spec does not match 100%
max_batch_size = 1
max_draft_len = 4
kv_cache_config = KvCacheConfig(enable_block_reuse=enable_block_reuse,
free_gpu_memory_fraction=0.5)
cuda_graph_config = CudaGraphConfig(
batch_sizes=[1]) if use_cuda_graph else None
llm_common_config = dict(
model=target_model_dir,
attn_backend=attn_backend,
disable_overlap_scheduler=disable_overlap_scheduler,
cuda_graph_config=cuda_graph_config,
max_batch_size=max_batch_size,
kv_cache_config=kv_cache_config,
# This max_seq_len is larger than the one specified
# in the llama 3 8B eagle's config. We want to make sure
# that the draft model won't go above its max in warmup
# in this test.
max_seq_len=8192,
)
spec_config = EagleDecodingConfig(
max_draft_len=max_draft_len,
speculative_model_dir=eagle_model_dir,
# Llama 3 does not support one model eagle.
eagle3_one_model=use_one_model,
)
llm_spec = LLM(**llm_common_config, speculative_config=spec_config)
# Acceptance rate tests
tok_ids = llm_spec.tokenizer.encode("The future of AI is")
num_tokens = 0
num_drafted = 0
num_accepted = 0
sampling_params = SamplingParams(max_tokens=128, temperature=0)
for output in llm_spec.generate_async(tok_ids,
sampling_params,
streaming=True):
new_tokens = output.outputs[0].token_ids
num_drafted += max_draft_len
num_accepted += len(new_tokens) - num_tokens - 1
num_tokens = len(new_tokens)
accept_rate = num_accepted / num_drafted
assert accept_rate > 0.15
# Output tests
prompts = [
"The capital of France is",
"The president of the United States is",
]
sampling_params = SamplingParams(max_tokens=10, temperature=0)
results_spec = llm_spec.generate(prompts, sampling_params)
generated_text_spec = [result.outputs[0].text for result in results_spec]
llm_spec.shutdown()
llm_ref = LLM(**llm_common_config)
results_ref = llm_ref.generate(prompts, sampling_params)
generated_text_ref = [result.outputs[0].text for result in results_ref]
llm_ref.shutdown()
for text_spec, text_ref in zip(generated_text_spec, generated_text_ref):
# The spec decode algorithm currently guarantees identical results
assert text_spec == text_ref
if __name__ == "__main__":
unittest.main()