TensorRT-LLMs/tensorrt_llm/models/commandr/config.py
Kaiyu Xie aaacc9bd68
Update TensorRT-LLM (#2562)
* Update TensorRT-LLM

---------

Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
2024-12-11 00:31:05 -08:00

88 lines
3.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import transformers
from ...mapping import Mapping
from ..convert_utils import infer_dtype
from ..modeling_utils import PretrainedConfig, QuantConfig
class CohereConfig(PretrainedConfig):
def __init__(self,
*,
output_multiplier_scale: float = 0.0625,
rotary_base: float = 10000.0,
attn_bias: bool = False,
**kwargs):
self.output_multiplier_scale = output_multiplier_scale
self.rotary_base = rotary_base
self.attn_bias = attn_bias
super().__init__(**kwargs)
def to_dict(self):
output = super().to_dict()
# Serialize the fields added in CohereConfig
output['output_multiplier_scale'] = self.output_multiplier_scale
output['rotary_base'] = self.rotary_base
output['attn_bias'] = self.attn_bias
return output
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config = transformers.AutoConfig.from_pretrained(
hf_config_or_dir, trust_remote_code=True)
head_size = hf_config.hidden_size // hf_config.num_attention_heads
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
if hf_config.tie_word_embeddings:
kwargs['use_parallel_embedding'] = True
kwargs['embedding_sharding_dim'] = 0
return CohereConfig(
architecture=hf_config.architectures[0],
dtype=dtype,
num_hidden_layers=hf_config.num_hidden_layers,
num_attention_heads=hf_config.num_attention_heads,
hidden_size=hf_config.hidden_size,
intermediate_size=hf_config.intermediate_size,
num_key_value_heads=hf_config.num_key_value_heads,
head_size=head_size,
vocab_size=hf_config.vocab_size,
position_embedding_type='rope_gptj', # different rope type
max_position_embeddings=hf_config.max_position_embeddings,
hidden_act=hf_config.hidden_act,
norm_epsilon=hf_config.layer_norm_eps,
output_multiplier_scale=hf_config.logit_scale,
rotary_base=hf_config.rope_theta,
attn_bias=hf_config.attention_bias,
qk_layernorm=hf_config.use_qk_norm,
mapping=mapping,
quantization=quant_config,
**kwargs)