mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
214 lines
8.3 KiB
C++
214 lines
8.3 KiB
C++
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/nvtxUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/layers/defaultDecodingParams.h"
|
|
#include "tensorrt_llm/layers/layerUtils.h"
|
|
#include "tensorrt_llm/layers/topKSamplingLayer.h"
|
|
#include "tensorrt_llm/layers/topPSamplingLayer.h"
|
|
|
|
#include "samplingLayer.h"
|
|
#include <algorithm>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <typename T>
|
|
SamplingLayer<T>::SamplingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
|
|
std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
, mDecodingMode(mode)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK_WITH_INFO(!mDecodingMode.isBeamSearch(), "SamplingLayer does not support Beam search mode");
|
|
TLLM_CHECK_WITH_INFO(mDecodingMode.isTopKorTopP(), "SamplingLayer requires TopK or TopP mode");
|
|
if (mDecodingMode.isTopK())
|
|
{
|
|
mSamplingLayers.emplace_back(std::make_unique<TopKSamplingLayer<T>>(decoderDomain, mBufferManager));
|
|
}
|
|
|
|
if (mDecodingMode.isTopP())
|
|
{
|
|
mSamplingLayers.emplace_back(
|
|
std::make_unique<TopPSamplingLayer<T>>(decoderDomain, mBufferManager, /* deterministic */ true));
|
|
}
|
|
|
|
allocateBuffer(decoderDomain.getBatchSize());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
size_t workspaceSize = 0;
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
workspaceSize = std::max(workspaceSize, layer->getWorkspaceSize());
|
|
}
|
|
mWorkspaceSize = workspaceSize;
|
|
|
|
auto const batchSizeShape = ITensor::makeShape({batchSize});
|
|
mSetupWorkspaceSize = DecodingLayerWorkspace::calculateRequiredWorkspaceSize(
|
|
std::make_pair(batchSizeShape, TRTDataType<uint64_t>::value));
|
|
mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<bool>::value);
|
|
mCurandStatesDevice
|
|
= mBufferManager->gpu(ITensor::makeShape({batchSize, sizeof(curandState_t)}), TRTDataType<int8_t>::value);
|
|
|
|
// host buffers.
|
|
mSkipDecodeHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<bool>::value);
|
|
|
|
mRuntimeMinPHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<float>::value);
|
|
mRuntimeMinPDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
|
|
TLLM_CHECK(mSkipDecodeHost != nullptr);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& baseSetupParams,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(SamplingLayer_setup);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
|
|
|
|
workspace->initializeDeviceCurandStates(
|
|
setupParams->randomSeed, batchSize, workspace->getDeviceBatchSlots(), mCurandStatesDevice);
|
|
|
|
if (setupParams->outputLogProbs)
|
|
{
|
|
// FIXME: monotonically growing
|
|
mOutputLogProbs = std::any_of(setupParams->outputLogProbs->begin(), setupParams->outputLogProbs->end(),
|
|
[this](bool outputLogProbs) { return this->mOutputLogProbs | outputLogProbs; });
|
|
}
|
|
|
|
if (setupParams->cumLogProbs)
|
|
{
|
|
// FIXME: monotonically growing
|
|
mCumLogProbs = std::any_of(setupParams->cumLogProbs->begin(), setupParams->cumLogProbs->end(),
|
|
[this](bool cumLogProbs) { return this->mCumLogProbs | cumLogProbs; });
|
|
}
|
|
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
layer->setup(batchSize, beamWidth, batchSlots, setupParams, workspace);
|
|
}
|
|
|
|
FillBuffers const fillBuffers{batchSize, mDecoderDomain.getBatchSize(), mBufferManager};
|
|
bool const useMinP = mDecodingMode.isUseMinP() && setupParams->runtimeMinP.has_value();
|
|
mUseMinP |= useMinP;
|
|
if (mUseMinP)
|
|
{
|
|
fillBuffers(setupParams->runtimeMinP, DefaultDecodingParams::getMinP(), mRuntimeMinPHost, mRuntimeMinPDevice,
|
|
batchSlots, std::pair<float, float>(-1e-6f, 1.0f), "min_p");
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& outputs,
|
|
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(SamplingLayer_forwardAsync);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
|
|
|
|
auto const localDecoderDomain = getLocalDecoderDomain(inputs, mDecoderDomain);
|
|
auto const batchSize = inputs->logits.value()->getDimension<0>();
|
|
|
|
auto const* endIds = bufferCast<TokenIdType>(*inputs->endIds);
|
|
|
|
FinishedState const* finishedInput = (inputs->finished)
|
|
? reinterpret_cast<FinishedState const*>(bufferCast<FinishedState::UnderlyingType>(*inputs->finished.value()))
|
|
: nullptr;
|
|
|
|
auto const skipTopP = !mDecodingMode.isTopP();
|
|
|
|
auto const* batchSlotsHostPtr = bufferCast<SizeType32>(*inputs->batchSlots);
|
|
auto minPs = mUseMinP
|
|
&& !allOfBatchSlots(batchSlotsHostPtr, bufferCast<float>(*mRuntimeMinPHost),
|
|
localDecoderDomain.getBatchSize(), DefaultDecodingParams::getMinP())
|
|
? mRuntimeMinPDevice
|
|
: nullptr;
|
|
|
|
// Compute probabilities either for TopP or if cumLogProbs or outputLogProbs are specified
|
|
bool const skipSoftMax = skipTopP && !mOutputLogProbs && !mCumLogProbs && minPs == nullptr;
|
|
|
|
inputs->curandStates = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
|
|
inputs->probsComputed = !skipSoftMax;
|
|
if (!skipSoftMax)
|
|
{
|
|
auto runtimeLogitsPtr = bufferCast<T>(*workspace->getDeviceRuntimeLogits());
|
|
auto logitsPtrsPtr = static_cast<T**>(nullptr);
|
|
auto biasPtr = static_cast<T*>(nullptr);
|
|
auto const* batchSlotsPtr = workspace->getDeviceBatchSlotsPtr();
|
|
|
|
BiasSoftmaxParams<T> biasSoftmaxParams;
|
|
biasSoftmaxParams.logits = runtimeLogitsPtr;
|
|
biasSoftmaxParams.logitsPtrs = logitsPtrsPtr;
|
|
biasSoftmaxParams.probs = runtimeLogitsPtr;
|
|
biasSoftmaxParams.bias = biasPtr;
|
|
biasSoftmaxParams.endIds = endIds;
|
|
biasSoftmaxParams.finished = finishedInput;
|
|
biasSoftmaxParams.batchSlots = batchSlotsPtr;
|
|
biasSoftmaxParams.batchSize = batchSize;
|
|
biasSoftmaxParams.maxBatchSize = mDecoderDomain.getBatchSize();
|
|
biasSoftmaxParams.maxBeamWidth = 1;
|
|
biasSoftmaxParams.vocabSize = mDecoderDomain.getVocabSize();
|
|
biasSoftmaxParams.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
|
|
biasSoftmaxParams.skipSoftMax = skipSoftMax;
|
|
biasSoftmaxParams.batchSlotsLogits = false;
|
|
biasSoftmaxParams.minPs = bufferCastOrNull<float>(minPs);
|
|
biasSoftmaxParams.checkParams();
|
|
invokeAddBiasSoftMax(biasSoftmaxParams, getStream());
|
|
sync_check_cuda_error(getStream());
|
|
}
|
|
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
layer->forwardAsync(outputs, baseInputs, workspace);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
size_t SamplingLayer<T>::getWorkspaceSize() const noexcept
|
|
{
|
|
return std::max(mWorkspaceSize, mSetupWorkspaceSize);
|
|
}
|
|
|
|
template class SamplingLayer<float>;
|
|
template class SamplingLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|