mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def split(v: Union[np.ndarray, torch.Tensor],
|
|
tp_size: int,
|
|
tp_rank: int,
|
|
dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
assert len(v.shape) > 1 or dim == 0
|
|
if isinstance(v, np.ndarray):
|
|
return np.ascontiguousarray(
|
|
np.split(v, tp_size, axis=dim)[tp_rank].copy())
|
|
else:
|
|
assert v.shape[dim] % tp_size == 0, \
|
|
'Unable to split: shape={v.shape} (dim={dim}) tp_size={tp_size}.'
|
|
split_size = v.shape[dim] // tp_size
|
|
return v.split(split_size, dim=dim)[tp_rank].clone().detach()
|