TensorRT-LLMs/cpp/tensorrt_llm/kernels/llama4MinLatencyKernels/llama4Utils.cuh
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

128 lines
3.1 KiB
Plaintext

/*
* Copyright (c) 2025-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/config.h"
#include <cuda_fp8.h>
#include "tensorrt_llm/common/envUtils.h"
TRTLLM_NAMESPACE_BEGIN
namespace kernels::llama4_min_latency
{
namespace llama4_bf16_bf16_gemm
{
constexpr int GEMM_K = 5120;
constexpr int BLOCK_SIZE = 256;
constexpr int NUM_EXPERTS = 128;
constexpr int VEC_SIZE = 4;
} // namespace llama4_bf16_bf16_gemm
namespace llama4_fp8_bf16_gemm
{
constexpr int HIDDEN_IN = 5120;
constexpr int HIDDEN_OUT = 896;
constexpr int Q_HIDDEN_OUT = 640;
constexpr float FLOOR_SCALE = 8192.0;
constexpr float ATTN_SCALE = 0.1;
constexpr int BLOCK_SIZE = 128;
constexpr int WARP_SIZE = 32;
constexpr int WARP_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;
constexpr int VEC_SIZE = 8;
constexpr bool ENABLE_ACQBULK = 1;
constexpr bool ENABLE_PREFETCH = 1;
constexpr bool ENABLE_PREEXIT = 0;
} // namespace llama4_fp8_bf16_gemm
namespace llama4_fp8_fp8_gemm_swiglu
{
constexpr int BLOCK_SIZE = 128;
constexpr int WARP_SIZE = 32;
constexpr int VEC_SIZE = 8;
constexpr bool ENABLE_ACQBULK = 1;
constexpr bool ENABLE_PREFETCH = 0;
constexpr bool ENABLE_PREEXIT = 0;
} // namespace llama4_fp8_fp8_gemm_swiglu
inline void launch_kernel_pdl(
dim3 grid_dim, dim3 block_dim, cudaStream_t stream, void* kernel_func, void* args[], int num_args)
{
cudaLaunchConfig_t config;
config.gridDim = grid_dim;
config.blockDim = block_dim;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
config.attrs = attrs;
config.numAttrs = 0;
attrs[config.numAttrs].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[config.numAttrs++].val.programmaticStreamSerializationAllowed
= (tensorrt_llm::common::getEnvEnablePDL() ? 1 : 0);
cudaLaunchKernelExC(&config, (void const*) kernel_func, args);
}
inline int div_up(int x, int y)
{
return (x + y - 1) / y;
}
__device__ __forceinline__ float2 ffma2(float2 x, float2 y, float2 acc)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ == 1000))
return __ffma2_rn(x, y, acc);
#else
return make_float2(x.x * y.x + acc.x, x.y * y.y + acc.y);
#endif
}
__device__ __forceinline__ float silu(float x)
{
return x / (1.0f + __expf(-x));
}
__device__ __forceinline__ float sigmoid(float x)
{
return 1.0f / (1.0f + __expf(-x));
}
struct __align__(8) aligned_fp8x8
{
__align__(8) __nv_fp8x4_e4m3 data[2];
};
struct __align__(8) aligned_bfloat16x4
{
__align__(8) __nv_bfloat16 data[4];
};
} // namespace kernels::llama4_min_latency
TRTLLM_NAMESPACE_END