TensorRT-LLMs/cpp/tensorrt_llm/plugins/topkLastDimPlugin/topkLastDimPlugin.cpp
2025-03-11 21:13:42 +08:00

317 lines
10 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "topkLastDimPlugin.h"
#include "tensorrt_llm/common/assert.h"
using namespace nvinfer1;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::common;
using tensorrt_llm::plugins::TopkLastDimPluginCreator;
using tensorrt_llm::plugins::TopkLastDimPlugin;
static char const* TOPK_LAST_DIM_PLUGIN_VERSION{"1"};
static char const* TOPK_LAST_DIM_PLUGIN_NAME{"TopkLastDim"};
PluginFieldCollection TopkLastDimPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> TopkLastDimPluginCreator::mPluginAttributes;
TopkLastDimPlugin::TopkLastDimPlugin(nvinfer1::DataType type, int32_t k, bool is_largest)
: mType(type)
, mK(k) // To avoid data-dependent shape, enforce K to be non-dynamic
, mIsLargest(is_largest)
{
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF)
|| (mType == DataType::kINT32),
"Only support int, float, half, and bfloat16.");
}
// Parameterized constructor
TopkLastDimPlugin::TopkLastDimPlugin(void const* data, size_t length)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
read(d, mType);
read(d, mK);
read(d, mIsLargest);
TLLM_CHECK(d == a + length);
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF)
|| (mType == DataType::kINT32),
"Only support int, float, half, and bfloat16.");
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* TopkLastDimPlugin::clone() const noexcept
{
auto* plugin = new TopkLastDimPlugin(mType, mK, mIsLargest);
plugin->setPluginNamespace(mNamespace.c_str());
return plugin;
}
// Outputs
// out_val or out_idx: [batch_size, K]
nvinfer1::DimsExprs TopkLastDimPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
TLLM_CHECK_WITH_INFO(outputIndex < 2, "Only 2 outputs.");
nvinfer1::DimsExprs output(inputs[0]);
int numDim = output.nbDims;
output.d[numDim - 1] = exprBuilder.constant(mK);
return output;
}
bool TopkLastDimPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
bool res = inOut[pos].format == TensorFormat::kLINEAR;
if (pos < 2) // input and out_val tensor must be the same type as the plugin
{
res = res && inOut[pos].type == mType;
}
else if (pos == 2) // out_idx must be int32
{
res = res && inOut[pos].type == DataType::kINT32;
}
return res;
}
void TopkLastDimPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
}
size_t TopkLastDimPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
// extract shape info and then call helper
auto const batchSize = inputs[getInputTensorIdx()].dims.d[0];
auto const inputLength = inputs[getInputTensorIdx()].dims.d[1];
size_t tempStorageBytes{};
if (mType == DataType::kINT32)
{
tempStorageBytes = invokeComputeTopkLastDimWorkspaceSize<int>(batchSize, inputLength, mK, mIsLargest);
}
else if (mType == DataType::kHALF)
{
tempStorageBytes = invokeComputeTopkLastDimWorkspaceSize<half>(batchSize, inputLength, mK, mIsLargest);
}
else if (mType == DataType::kFLOAT)
{
tempStorageBytes = invokeComputeTopkLastDimWorkspaceSize<float>(batchSize, inputLength, mK, mIsLargest);
}
#ifdef ENABLE_BF16
else if (mType == DataType::kBF16)
{
tempStorageBytes = invokeComputeTopkLastDimWorkspaceSize<__nv_bfloat16>(batchSize, inputLength, mK, mIsLargest);
}
#endif
return tempStorageBytes;
}
template <typename T>
int TopkLastDimPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream)
{
// inputs
// 0. input_tensor [batch_size, inputLength]
// outputs
// 0. output_values [batch_size, k]
// 1. output_indices [batch_size, k]
auto const batchSize = inputDesc[getInputTensorIdx()].dims.d[0];
auto const inputLength = inputDesc[getInputTensorIdx()].dims.d[1];
if (batchSize == 0)
{
// nothing to do for empty tensor
return 0;
}
invokeTopkLastDim<T>(
batchSize, inputLength, mK, mIsLargest, inputs[getInputTensorIdx()], outputs[0], outputs[1], workspace, stream);
sync_check_cuda_error(stream);
return 0;
}
int TopkLastDimPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (mType == DataType::kINT32)
{
return enqueueImpl<int>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else if (mType == DataType::kHALF)
{
return enqueueImpl<half>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else if (mType == DataType::kFLOAT)
{
return enqueueImpl<float>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#ifdef ENABLE_BF16
else if (mType == DataType::kBF16)
{
return enqueueImpl<__nv_bfloat16>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType TopkLastDimPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK_WITH_INFO(index < 2, "Only 2 outputs.");
nvinfer1::DataType data_type;
if (index == 1)
{
data_type = DataType::kINT32;
}
else
{
data_type = inputTypes[getInputTensorIdx()];
}
return data_type;
}
// IPluginV2 Methods
char const* TopkLastDimPlugin::getPluginType() const noexcept
{
return TOPK_LAST_DIM_PLUGIN_NAME;
}
char const* TopkLastDimPlugin::getPluginVersion() const noexcept
{
return TOPK_LAST_DIM_PLUGIN_VERSION;
}
int TopkLastDimPlugin::getNbOutputs() const noexcept
{
return 2;
}
int TopkLastDimPlugin::initialize() noexcept
{
return 0;
}
void TopkLastDimPlugin::terminate() noexcept {}
size_t TopkLastDimPlugin::getSerializationSize() const noexcept
{
return sizeof(mType) + sizeof(mK) + sizeof(mIsLargest);
}
void TopkLastDimPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mType);
write(d, mK);
write(d, mIsLargest);
TLLM_CHECK(d == a + getSerializationSize());
}
void TopkLastDimPlugin::destroy() noexcept
{
delete this;
}
///////////////
TopkLastDimPluginCreator::TopkLastDimPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("k", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("is_largest", nullptr, PluginFieldType::kINT32));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* TopkLastDimPluginCreator::getPluginName() const noexcept
{
return TOPK_LAST_DIM_PLUGIN_NAME;
}
char const* TopkLastDimPluginCreator::getPluginVersion() const noexcept
{
return TOPK_LAST_DIM_PLUGIN_VERSION;
}
PluginFieldCollection const* TopkLastDimPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* TopkLastDimPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
nvinfer1::DataType type{};
int32_t k{};
bool is_largest{};
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "k"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
k = static_cast<int32_t>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "is_largest"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
is_largest = static_cast<int32_t>(*(static_cast<int const*>(fields[i].data))) != 0;
}
}
try
{
auto* obj = new TopkLastDimPlugin(type, k, is_largest);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* TopkLastDimPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call TopkLastDimPlugin::destroy()
try
{
auto* obj = new TopkLastDimPlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}