TensorRT-LLMs/cpp/tensorrt_llm/plugins/weightOnlyGroupwiseQuantMatmulPlugin/weightOnlyGroupwiseQuantMatmulPlugin.cpp
Guoming Zhang 57079cecb3
[None][chroe] Rename TensorRT-LLM to TensorRT LLM for source code. (#7851)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
2025-09-22 10:05:47 -07:00

658 lines
26 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "weightOnlyGroupwiseQuantMatmulPlugin.h"
#include <numeric>
using namespace nvinfer1;
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels::cutlass_kernels;
using tensorrt_llm::plugins::WeightOnlyGroupwiseQuantMatmulPluginCreator;
using tensorrt_llm::plugins::WeightOnlyGroupwiseQuantMatmulPlugin;
using tensorrt_llm::plugins::WeightOnlyGroupwiseQuantGemmPluginProfiler;
using tensorrt_llm::plugins::WeightOnlyGemmRunnerPtr;
using tensorrt_llm::plugins::read;
using tensorrt_llm::plugins::write;
static char const* WOQ_GROUPWISE_MATMUL_PLUGIN_VERSION{"1"};
static char const* WOQ_GROUPWISE_MATMUL_PLUGIN_NAME{"WeightOnlyGroupwiseQuantMatmul"};
PluginFieldCollection WeightOnlyGroupwiseQuantMatmulPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> WeightOnlyGroupwiseQuantMatmulPluginCreator::mPluginAttributes;
void WeightOnlyGroupwiseQuantGemmPluginProfiler::runTactic(int m, int n, int k,
WeightOnlyGroupwiseQuantGemmPluginProfiler::Config const& tactic, char* workspace, cudaStream_t const& stream)
{
// Quantized weights are packed in FP16 format (INT4*4 -> FP16, INT8*2 -> FP16)
int const originalN = mQuantAlgo & GroupwiseQuantAlgo::INT8_WEIGHT ? n * FP16_INT8_RATIO : n * FP16_INT4_RATIO;
half* actPtr = reinterpret_cast<half*>(workspace);
void* weightPtr = nextWorkspacePtr(reinterpret_cast<int8_t*>(actPtr), m * k * sizeof(half));
half* inputScalesPtr
= reinterpret_cast<half*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(weightPtr), n * k * sizeof(float)));
half* zerosPtr = reinterpret_cast<half*>(
nextWorkspacePtr(reinterpret_cast<int8_t*>(inputScalesPtr), k * originalN * sizeof(half) / mGroupSize));
half* biasesPtr = reinterpret_cast<half*>(
nextWorkspacePtr(reinterpret_cast<int8_t*>(zerosPtr), k * originalN * sizeof(half) / mGroupSize));
half* outputPtr = reinterpret_cast<half*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(biasesPtr), n * sizeof(half)));
char* workspacePtr
= reinterpret_cast<char*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(outputPtr), m * originalN * sizeof(half)));
if ((mQuantAlgo & GroupwiseQuantAlgo::ZERO) == 0)
{
zerosPtr = nullptr;
}
if ((mQuantAlgo & GroupwiseQuantAlgo::BIAS) == 0)
{
biasesPtr = nullptr;
}
if (tactic.enableCudaKernel)
{
// run CUDA kernel
void const* pre_quant_scale_ptr = nullptr;
bool apply_alpha_in_advance = false;
float alpha = 1.0;
tensorrt_llm::kernels::weight_only::Params params{actPtr, pre_quant_scale_ptr, weightPtr, inputScalesPtr,
zerosPtr, biasesPtr, outputPtr, alpha, m, originalN, k, mGroupSize, mCudaKernelType,
apply_alpha_in_advance};
tensorrt_llm::kernels::weight_only::kernel_launcher(mArch, params, stream);
}
else
{
// run CUTLASS kernel
int const wsSize = mRunner->getWorkspaceSize(m, originalN, k);
if (mQuantAlgo & GroupwiseQuantAlgo::INT8_WEIGHT)
{
mRunner->gemm(actPtr, reinterpret_cast<int8_t*>(weightPtr), inputScalesPtr, zerosPtr, biasesPtr, outputPtr,
m, originalN, k, mGroupSize, tactic, workspacePtr, wsSize, stream);
}
else
{
mRunner->gemm(actPtr, reinterpret_cast<cutlass::uint4b_t*>(weightPtr), inputScalesPtr, zerosPtr, biasesPtr,
outputPtr, m, originalN, k, mGroupSize, tactic, workspacePtr, wsSize, stream);
}
}
}
void WeightOnlyGroupwiseQuantGemmPluginProfiler::computeTmpSize(size_t maxM, size_t n, size_t k)
{
// Quantized weights are packed in FP16 format (INT4*4 -> FP16, INT8*2 -> FP16)
int const originalN = mQuantAlgo & GroupwiseQuantAlgo::INT8_WEIGHT ? n * FP16_INT8_RATIO : n * FP16_INT4_RATIO;
std::vector<size_t> workspaces = {
maxM * k * sizeof(half), // A
k * n * sizeof(float), // B
k * originalN * sizeof(half) / mGroupSize, // scales
k * originalN * sizeof(half) / mGroupSize, // zeros
originalN * sizeof(half), // biases
maxM * originalN * sizeof(half), // C
mRunner->getWorkspaceSize(maxM, originalN, k) // workspace
};
size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
setTmpWorkspaceSizeInBytes(bytes);
}
std::vector<WeightOnlyGroupwiseQuantGemmPluginProfiler::Config> WeightOnlyGroupwiseQuantGemmPluginProfiler::getTactics(
int m, int n, int k) const
{
return mRunner->getConfigs();
}
bool WeightOnlyGroupwiseQuantGemmPluginProfiler::checkTactic(int m, int n, int k, Config const& tactic) const
{
// stop to profile Cuda kernel for m >= 16
if (tactic.enableCudaKernel)
{
return m < 16;
}
return true;
}
WeightOnlyGroupwiseQuantMatmulPlugin::WeightOnlyGroupwiseQuantMatmulPlugin(nvinfer1::DataType type, int quant_algo,
int group_size, float alpha, WeightOnlyGroupwiseQuantMatmulPlugin::PluginProfilerPtr const& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
init(type, quant_algo, group_size, alpha);
}
// Parameterized constructor
WeightOnlyGroupwiseQuantMatmulPlugin::WeightOnlyGroupwiseQuantMatmulPlugin(
void const* data, size_t length, WeightOnlyGroupwiseQuantMatmulPlugin::PluginProfilerPtr const& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
nvinfer1::DataType type;
int quant_algo = 0;
int group_size = 0;
float alpha = 1.0f;
read(d, type);
read(d, quant_algo);
read(d, group_size);
read(d, alpha);
read(d, mDims);
init(type, quant_algo, group_size, alpha);
mPluginProfiler->deserialize(d, mDims, mGemmId);
TLLM_CHECK_WITH_INFO(d == a + length,
"Expected length (%d) != real length (%d). This is often "
"caused by using different TensorRT LLM version to build "
"engine and run engine.",
(int) length, (int) (d - a));
}
template <typename ActivationType, typename WeightType, typename OutputType, typename ScaleZeroType,
cutlass::WeightOnlyQuantOp QuantOp>
using GemmRunner = tensorrt_llm::kernels::cutlass_kernels::CutlassFpAIntBGemmRunner<ActivationType, WeightType, QuantOp,
ScaleZeroType, OutputType, OutputType>;
template <typename ActivationType, typename WeightType, typename OutputType, typename ScaleZeroType = OutputType>
WeightOnlyGemmRunnerPtr selectGemmRunnerForZERO(int quant_algo)
{
if (quant_algo & GroupwiseQuantAlgo::ZERO)
{
return std::make_shared<GemmRunner<ActivationType, WeightType, OutputType, ScaleZeroType,
cutlass::WeightOnlyQuantOp::FINEGRAINED_SCALE_AND_ZEROS>>();
}
else
{
return std::make_shared<GemmRunner<ActivationType, WeightType, OutputType, ScaleZeroType,
cutlass::WeightOnlyQuantOp::FINEGRAINED_SCALE_ONLY>>();
}
}
template <typename ActivationType>
WeightOnlyGemmRunnerPtr selectGemmRunnerForWeightType(int quant_algo)
{
if (quant_algo & GroupwiseQuantAlgo::INT8_WEIGHT)
{
return selectGemmRunnerForZERO<ActivationType, uint8_t, ActivationType>(quant_algo);
}
else
{
return selectGemmRunnerForZERO<ActivationType, cutlass::uint4b_t, ActivationType>(quant_algo);
}
}
void WeightOnlyGroupwiseQuantMatmulPlugin::init(nvinfer1::DataType type, int quant_algo, int group_size, float alpha)
{
mArch = tensorrt_llm::common::getSMVersion();
mType = type;
mQuantAlgo = quant_algo;
mGroupSize = group_size;
// quant_algo = int8_weight * 16 + fp8_alpha * 8 + pre_quant_scale * 4 + zero * 2 + bias
mPreQuantScaleInputIdx = (quant_algo & GroupwiseQuantAlgo::PRE_QUANT_SCALE) ? 1 : 0;
mWeightInputIdx = mPreQuantScaleInputIdx + 1;
mScalesInputIdx = mWeightInputIdx + 1;
mZerosInputIdx = (quant_algo & GroupwiseQuantAlgo::ZERO) ? mScalesInputIdx + 1 : mScalesInputIdx;
mBiasesInputIdx = (quant_algo & GroupwiseQuantAlgo::BIAS) ? mZerosInputIdx + 1 : mZerosInputIdx;
if (mType == nvinfer1::DataType::kHALF)
{
// CUTLASS kernel selection
if (quant_algo & GroupwiseQuantAlgo::FP8_ALPHA)
{
mAlpha = alpha;
// Ada & Hopper style kernels
if (mArch < 89)
{
TLLM_THROW("W4A(fp)8 kernel is unsupported on pre-Ada (sm<89) architectures!");
}
assert(!(quant_algo & GroupwiseQuantAlgo::INT8_WEIGHT) && "W4A(fp)8 kernel requires INT4 weight!");
m_weightOnlyGroupwiseGemmRunner
= selectGemmRunnerForZERO<__nv_fp8_e4m3, cutlass::uint4b_t, half>(quant_algo);
}
else
{
m_weightOnlyGroupwiseGemmRunner = selectGemmRunnerForWeightType<half>(quant_algo);
}
// CUDA kernel selection
if (quant_algo & GroupwiseQuantAlgo::INT8_WEIGHT)
{
// INT8 weight
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
mArch, tensorrt_llm::kernels::weight_only::KernelType::FP16Int8Groupwise);
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::FP16Int8Groupwise;
}
else
{
// INT4 weight
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
mArch, tensorrt_llm::kernels::weight_only::KernelType::FP16Int4Groupwise);
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::FP16Int4Groupwise;
}
}
#if defined(ENABLE_BF16)
else if (mType == nvinfer1::DataType::kBF16)
{
// CUTLASS kernel selection
if (quant_algo & GroupwiseQuantAlgo::FP8_ALPHA)
{
mAlpha = alpha;
// FP8 requires at least sm89 devices
if (mArch < 89)
{
TLLM_THROW("W4A(fp)8 kernel is unsupported on pre-Ada (sm<89) architectures!");
}
assert(!(quant_algo & GroupwiseQuantAlgo::INT8_WEIGHT) && "W4A(fp)8 kernel requires INT4 weight!");
m_weightOnlyGroupwiseGemmRunner
= selectGemmRunnerForZERO<__nv_fp8_e4m3, cutlass::uint4b_t, __nv_bfloat16, half>(quant_algo);
}
else
{
m_weightOnlyGroupwiseGemmRunner = selectGemmRunnerForWeightType<__nv_bfloat16>(quant_algo);
}
// CUDA kernel selection
if (quant_algo & GroupwiseQuantAlgo::INT8_WEIGHT)
{
// INT8 weight
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
mArch, tensorrt_llm::kernels::weight_only::KernelType::BF16Int8Groupwise);
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::BF16Int8Groupwise;
}
else
{
// INT4 weight
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
mArch, tensorrt_llm::kernels::weight_only::KernelType::BF16Int4Groupwise);
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::BF16Int4Groupwise;
}
}
#endif
else
{
TLLM_THROW("Unsupported data type");
}
mPluginProfiler->setQuantAlgo(mQuantAlgo);
mPluginProfiler->setGroupSize(mGroupSize);
if (mCudaKernelEnabled)
{
mPluginProfiler->setCudaKernelType(mCudaKernelType, mArch);
}
mGemmId = GemmIdCore(mDims.n, mDims.k, mType);
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* WeightOnlyGroupwiseQuantMatmulPlugin::clone() const noexcept
{
auto* plugin = new WeightOnlyGroupwiseQuantMatmulPlugin(*this);
return plugin;
}
void WeightOnlyGroupwiseQuantMatmulPlugin::configGemm()
{
mPluginProfiler->profileTactics(m_weightOnlyGroupwiseGemmRunner, mType, mDims, mGemmId, mCudaKernelEnabled);
}
nvinfer1::DimsExprs WeightOnlyGroupwiseQuantMatmulPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
// inputs
// 0 activations [M, K]
// 1 pre-quant scales [K] (optional)
// 2 weights [K, N/2]
// 3 scales [K // group_size, N]
// 4 zeros [K // group_size, N] (optional)
// 5 biases [N] (optional)
try
{
TLLM_CHECK(nbInputs == mBiasesInputIdx + 1);
TLLM_CHECK(outputIndex == 0);
int const nbDimsA = inputs[0].nbDims;
int const nbDimsB = inputs[mWeightInputIdx].nbDims;
TLLM_CHECK(nbDimsA >= 2);
TLLM_CHECK(nbDimsB == 2);
DimsExprs ret;
ret.nbDims = nbDimsA;
for (int ii = 0; ii < nbDimsA - 1; ++ii)
{
ret.d[ii] = inputs[0].d[ii];
}
// int4/int8 weight only quant (INT4*4 -> FP16, INT8*2 -> FP16)
int const weight_multiplier = mQuantAlgo & GroupwiseQuantAlgo::INT8_WEIGHT ? FP16_INT8_RATIO : FP16_INT4_RATIO;
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[mWeightInputIdx].d[1]->getConstantValue() * weight_multiplier);
return ret;
}
catch (std::exception const& e)
{
caughtError(e);
}
return DimsExprs{};
}
bool WeightOnlyGroupwiseQuantMatmulPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
if (pos < nbInputs + 1)
{
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
}
else
{
// Never should be here
assert(false);
return false;
}
}
void WeightOnlyGroupwiseQuantMatmulPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
auto const minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies<int>());
auto const maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies<int>());
int const maxK = in[0].max.d[in[0].max.nbDims - 1];
// Quantized weights are packed in FP16 format (INT4*4 -> FP16, INT8*2 -> FP16)
int const weight_multiplier = mQuantAlgo & GroupwiseQuantAlgo::INT8_WEIGHT ? FP16_INT8_RATIO : FP16_INT4_RATIO;
int const maxN = in[mWeightInputIdx].max.d[1] * weight_multiplier;
auto const K = maxK;
auto const N = maxN / weight_multiplier;
if (!mDims.isInitialized())
{
mDims = {minM, maxM, N, K};
}
mGemmId = {N, K, mType};
size_t smoothedActSize = static_cast<size_t>(maxM) * static_cast<size_t>(maxK)
* (in[0].desc.type == nvinfer1::DataType::kFLOAT ? sizeof(float) : sizeof(half));
m_workspaceMaxSize = smoothedActSize + m_weightOnlyGroupwiseGemmRunner->getWorkspaceSize(maxM, maxN, maxK);
}
size_t WeightOnlyGroupwiseQuantMatmulPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
return m_workspaceMaxSize;
}
template <typename ActType>
void pre_quant_scale_for_act(int const m, int const k, int const mQuantAlgo, int const mPreQuantScaleInputIdx,
void const* const* inputs, void* workspace, cudaStream_t stream)
{
// Apply pre-quant per channel scale on activations
if (mQuantAlgo & GroupwiseQuantAlgo::FP8_ALPHA)
{
tensorrt_llm::kernels::apply_per_channel_scale_kernel_launcher<ActType, __nv_fp8_e4m3>(
reinterpret_cast<__nv_fp8_e4m3*>(workspace), reinterpret_cast<ActType const*>(inputs[0]),
reinterpret_cast<ActType const*>(inputs[mPreQuantScaleInputIdx]), m, k, nullptr, stream);
}
else
{
tensorrt_llm::kernels::apply_per_channel_scale_kernel_launcher<ActType, ActType>(
reinterpret_cast<ActType*>(workspace), reinterpret_cast<ActType const*>(inputs[0]),
reinterpret_cast<ActType const*>(inputs[mPreQuantScaleInputIdx]), m, k, nullptr, stream);
}
}
int WeightOnlyGroupwiseQuantMatmulPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
// inputs
// 0 activations [M, K]
// 1 pre-quant scales [K]
// 2 weights [K, N/2]
// 3 scales [K // group_size, N]
// 4 zeros [K // group_size, N]
// 5 biases [N]
// outputs
// mat [M, N]
int64_t m64 = 1;
for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii)
{
m64 *= inputDesc[0].dims.d[ii];
}
int const m = TLLM_INT32_CAST(m64);
int const n = TLLM_INT32_CAST(inputDesc[mWeightInputIdx].dims.d[1]);
int const k = TLLM_INT32_CAST(inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]);
// get best tactic and check if CUDA kernel should be used
bool use_cuda_kernel = false;
auto const& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId);
TLLM_CHECK_WITH_INFO(bestTactic,
"No valid weight only groupwise GEMM tactic(It is usually caused by the failure to execute all "
"candidate configurations of the CUTLASS kernel, please pay attention to the warning information "
"when building the engine.)");
use_cuda_kernel = bestTactic->enableCudaKernel;
bool use_pre_quant_scale = mQuantAlgo & GroupwiseQuantAlgo::PRE_QUANT_SCALE;
half const* zeros_ptr
= (mQuantAlgo & GroupwiseQuantAlgo::ZERO) ? reinterpret_cast<half const*>(inputs[mZerosInputIdx]) : nullptr;
half const* biases_ptr
= (mQuantAlgo & GroupwiseQuantAlgo::BIAS) ? reinterpret_cast<half const*>(inputs[mBiasesInputIdx]) : nullptr;
half const* act_ptr = reinterpret_cast<half const*>(inputs[0]);
if (use_pre_quant_scale && !use_cuda_kernel)
{
// Apply pre-quant per channel scale on activations
act_ptr = reinterpret_cast<half const*>(workspace);
if (mType == nvinfer1::DataType::kHALF)
{
pre_quant_scale_for_act<half>(m, k, mQuantAlgo, mPreQuantScaleInputIdx, inputs, workspace, stream);
}
#if defined(ENABLE_BF16)
else if (mType == nvinfer1::DataType::kBF16)
{
pre_quant_scale_for_act<__nv_bfloat16>(m, k, mQuantAlgo, mPreQuantScaleInputIdx, inputs, workspace, stream);
}
#endif
}
#if defined(ENABLE_BF16)
TLLM_CHECK_WITH_INFO(mType == nvinfer1::DataType::kHALF || mType == nvinfer1::DataType::kBF16,
"No valid weightOnlyGropwiseQuantMatmul configuration");
#else
TLLM_CHECK_WITH_INFO(mType == nvinfer1::DataType::kHALF, "No valid weightOnlyGropwiseQuantMatmul configuration");
#endif
// Quantized weights are packed in FP16 format (INT4*4 -> FP16, INT8*2 -> FP16)
int real_n = mQuantAlgo & GroupwiseQuantAlgo::INT8_WEIGHT ? n * FP16_INT8_RATIO : n * FP16_INT4_RATIO;
if (use_cuda_kernel)
{
// Apply CUDA kernel
void const* pre_quant_scale_ptr = nullptr;
if (use_pre_quant_scale)
pre_quant_scale_ptr = inputs[mPreQuantScaleInputIdx];
void const* cuda_kernel_act_ptr = inputs[0];
void const* cuda_kernel_weight_ptr = inputs[mWeightInputIdx];
void const* cuda_kernel_scales_ptr = inputs[mScalesInputIdx];
void* cuda_kernel_out_ptr = outputs[0];
tensorrt_llm::kernels::weight_only::Params params{cuda_kernel_act_ptr, pre_quant_scale_ptr,
cuda_kernel_weight_ptr, cuda_kernel_scales_ptr, zeros_ptr, biases_ptr, cuda_kernel_out_ptr, mAlpha, m,
real_n, k, mGroupSize, mCudaKernelType, static_cast<bool>(mQuantAlgo & GroupwiseQuantAlgo::FP8_ALPHA)};
tensorrt_llm::kernels::weight_only::kernel_launcher(mArch, params, stream);
}
else
{
// Apply CUTLASS kernel
int const ws_bytes = m_weightOnlyGroupwiseGemmRunner->getWorkspaceSize(m, real_n, k);
int32_t* weight_ptr = const_cast<int32_t*>(reinterpret_cast<int32_t const*>(inputs[mWeightInputIdx]));
m_weightOnlyGroupwiseGemmRunner->gemm(act_ptr, weight_ptr, inputs[mScalesInputIdx], zeros_ptr, biases_ptr,
mAlpha, outputs[0], m, real_n, k, mGroupSize, *bestTactic,
reinterpret_cast<char*>(workspace) + m * k * sizeof(half), ws_bytes, stream);
}
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType WeightOnlyGroupwiseQuantMatmulPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK(index == 0);
return mType;
}
// IPluginV2 Methods
char const* WeightOnlyGroupwiseQuantMatmulPlugin::getPluginType() const noexcept
{
return WOQ_GROUPWISE_MATMUL_PLUGIN_NAME;
}
char const* WeightOnlyGroupwiseQuantMatmulPlugin::getPluginVersion() const noexcept
{
return WOQ_GROUPWISE_MATMUL_PLUGIN_VERSION;
}
int WeightOnlyGroupwiseQuantMatmulPlugin::getNbOutputs() const noexcept
{
return 1;
}
int WeightOnlyGroupwiseQuantMatmulPlugin::initialize() noexcept
{
configGemm();
return 0;
}
void WeightOnlyGroupwiseQuantMatmulPlugin::terminate() noexcept {}
size_t WeightOnlyGroupwiseQuantMatmulPlugin::getSerializationSize() const noexcept
{
return sizeof(nvinfer1::DataType) + // mType
sizeof(int) + // mQuantAlgo
sizeof(int) + // mGroupSize
sizeof(float) + // mAlpha
sizeof(mDims) + // Dimensions
mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size
}
void WeightOnlyGroupwiseQuantMatmulPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mType);
write(d, mQuantAlgo);
write(d, mGroupSize);
write(d, mAlpha);
write(d, mDims);
mPluginProfiler->serialize(d, mGemmId);
TLLM_CHECK(d == a + getSerializationSize());
}
void WeightOnlyGroupwiseQuantMatmulPlugin::destroy() noexcept
{
// This gets called when the network containing plugin is destroyed
delete this;
}
///////////////
WeightOnlyGroupwiseQuantMatmulPluginCreator::WeightOnlyGroupwiseQuantMatmulPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("quant_algo", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("group_size", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("alpha", nullptr, PluginFieldType::kFLOAT32));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* WeightOnlyGroupwiseQuantMatmulPluginCreator::getPluginName() const noexcept
{
return WOQ_GROUPWISE_MATMUL_PLUGIN_NAME;
}
char const* WeightOnlyGroupwiseQuantMatmulPluginCreator::getPluginVersion() const noexcept
{
return WOQ_GROUPWISE_MATMUL_PLUGIN_VERSION;
}
PluginFieldCollection const* WeightOnlyGroupwiseQuantMatmulPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* WeightOnlyGroupwiseQuantMatmulPluginCreator::createPlugin(
char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
nvinfer1::DataType type{};
int QuantAlgo{};
int GroupSize{};
float Alpha{};
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "quant_algo"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
QuantAlgo = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "group_size"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
GroupSize = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "alpha"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
Alpha = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
}
try
{
// WeightOnlyGroupwiseQuantMatmulPluginCreator is unique and shared for an engine generation
// Create plugin profiler with shared tactics map
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false);
auto* obj = new WeightOnlyGroupwiseQuantMatmulPlugin(type, QuantAlgo, GroupSize, Alpha, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* WeightOnlyGroupwiseQuantMatmulPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call weightOnlyGroupwiseQuantMatmulPlugin::destroy()
try
{
// Create plugin profiler with private tactics map which is read from the serialized engine
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true);
auto* obj = new WeightOnlyGroupwiseQuantMatmulPlugin(serialData, serialLength, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}