TensorRT-LLMs/tests/integration/defs/examples/test_exaone.py
Dom Brown 8709fe8b53
chore: bump version to 0.19.0 (#3598) (#3841)
test: add test cases for 0.19 release (#3608)

* fix test name



* add quickstart test for nemotron-ultra



* add rcca multi-node test case for deepseek-v3



* add rcca info



---------




squash (#3642)



fix: nvbugs/5187237: fix deterministic mode crash (#3448)

* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error

* remove waive


* Revert "remove waive"

This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.



* revert ar fusion



---------



update fp8 doc (#3647)




tests: change qa perf test to trtllm-bench (#3619)




 fix: FP8 quantized lm_head (NvBug 5214229) (#3567)



infra: Add PR approval protection for the release branch (#3634)



fix: nvbugs/5231298: pytorch allreduce issue (#3673)



Fix: nvbugs/5222698 variable not defined (#3630)

* Fix: nvbugs/5222698 variable not defined



* Tidy code



---------



test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)



test:restore fp8 kv cache testing for L0 (#3671)



doc: Update DeepSeek perf docs (#3693)

* Update DeepSeek perf docs



* update



* Apply suggestions from code review




---------




tests: waive test_llm_multi_node (#3664)



fix: update test_user_buffers_mm_add_prologue atol (#3711)



Fix: cherry-pick hmac encryption from main branch (#3635)

* security fix cherry-pick changes from main



* fix hmac in remote mpi session (#3649)



---------





Un-waive DS-V3-Lite tests. (#3621)



fix: FP8 kv accuracy (#3675)

* fix FP8 kv accuracy



* update doc



---------



Fix script options for engines. (#3622)



unwaive multi-node test (#3721)



chore : Split more tests out of gpt tests (#3524) (#3674)



doc:add torch examples link into torch backend documentation (#3749)




test: Get Eagle tests working (#3593) (#3722)




Waive L0 test (#3756)



waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)





Update ds v3 parameters in stress test. (#3676)

waive gemma on L20 (#3766)



https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)

Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.



fix: PP4 fixes and cleanup (#3688)




remove benchmark test list (#3643)



skip disagg deepseek test if sm!=90 (#3720)



test: skip failed cases on B200 (#3710)

* add skip condition to tests



* fix error



---------



test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)

* skip_pre_ada for fp8 cases



* update



* update after rebase



---------



add know issue to deepseek doc. (#3800)



Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)




Waive L0 tests (#3826)



fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)

* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.



* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.



---------



[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)




Fix pre-commit



Fix again



Address some review comments for the MI

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
2025-04-29 16:57:22 +08:00

129 lines
4.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module test_exaone test exaone examples."""
import pytest
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
venv_mpi_check_call)
from defs.conftest import skip_post_blackwell
from defs.trt_test_alternative import check_call
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("data_type", ['bfloat16', 'float16'])
@pytest.mark.parametrize("llm_exaone_model_root",
['exaone_3.0_7.8b_instruct', 'exaone_deep_2.4b'],
indirect=True)
@pytest.mark.parametrize("use_weight_only",
[pytest.param(True, marks=skip_post_blackwell), False],
ids=["enable_weight_only", "disable_weight_only"])
def test_llm_exaone_1gpu(data_type, exaone_example_root, llm_exaone_model_root,
llama_example_root, llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir, num_beams,
use_weight_only):
print("Build engines...")
model_name = "exaone"
model_dir = convert_weights(
llm_venv=llm_venv,
# NOTE
# EXAONE is based on llama so reuse llama's checkpoint converter
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_exaone_model_root,
data_type=data_type,
use_weight_only=use_weight_only)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--max_beam_width={num_beams}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
rouge1_threshold = {
1: 22,
2: 22,
4: 23,
}[num_beams]
print("Run summarize...")
summary_cmd = generate_summary_cmd(
exaone_example_root,
hf_model_dir=llm_exaone_model_root,
engine_dir=engine_dir,
data_type=data_type,
tensorrt_llm_rouge1_threshold=rouge1_threshold,
use_py_session=False,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root,
num_beams=num_beams,
)
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(2)
@pytest.mark.parametrize("num_beams", [1],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("data_type", ['float16'])
@pytest.mark.parametrize("llm_exaone_model_root",
['exaone_3.0_7.8b_instruct', 'exaone_deep_2.4b'],
indirect=True)
def test_llm_exaone_2gpu(data_type, exaone_example_root, llm_exaone_model_root,
llama_example_root, llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir, num_beams):
tp_size = 2
print("Build engines...")
model_name = "exaone"
model_dir = convert_weights(
llm_venv=llm_venv,
# NOTE
# EXAONE is based on llama so reuse llama's checkpoint converter
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_exaone_model_root,
data_type=data_type,
tp_size=tp_size,
pp_size=1)
build_cmd = [
"trtllm-build", f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}", f"--max_beam_width={num_beams}"
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run summarize...")
summary_cmd = generate_summary_cmd(
exaone_example_root,
hf_model_dir=llm_exaone_model_root,
engine_dir=engine_dir,
data_type=data_type,
tensorrt_llm_rouge1_threshold=22,
use_py_session=False,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root,
num_beams=num_beams,
)
venv_mpi_check_call(llm_venv,
["mpirun", "-n", f"{tp_size}", "--allow-run-as-root"],
summary_cmd)