mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
test: add test cases for 0.19 release (#3608) * fix test name * add quickstart test for nemotron-ultra * add rcca multi-node test case for deepseek-v3 * add rcca info --------- squash (#3642) fix: nvbugs/5187237: fix deterministic mode crash (#3448) * nvbugs/5187237 nvbugs/5112075: fix deterministic mode error * remove waive * Revert "remove waive" This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac. * revert ar fusion --------- update fp8 doc (#3647) tests: change qa perf test to trtllm-bench (#3619) fix: FP8 quantized lm_head (NvBug 5214229) (#3567) infra: Add PR approval protection for the release branch (#3634) fix: nvbugs/5231298: pytorch allreduce issue (#3673) Fix: nvbugs/5222698 variable not defined (#3630) * Fix: nvbugs/5222698 variable not defined * Tidy code --------- test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685) test:restore fp8 kv cache testing for L0 (#3671) doc: Update DeepSeek perf docs (#3693) * Update DeepSeek perf docs * update * Apply suggestions from code review --------- tests: waive test_llm_multi_node (#3664) fix: update test_user_buffers_mm_add_prologue atol (#3711) Fix: cherry-pick hmac encryption from main branch (#3635) * security fix cherry-pick changes from main * fix hmac in remote mpi session (#3649) --------- Un-waive DS-V3-Lite tests. (#3621) fix: FP8 kv accuracy (#3675) * fix FP8 kv accuracy * update doc --------- Fix script options for engines. (#3622) unwaive multi-node test (#3721) chore : Split more tests out of gpt tests (#3524) (#3674) doc:add torch examples link into torch backend documentation (#3749) test: Get Eagle tests working (#3593) (#3722) Waive L0 test (#3756) waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656) Update ds v3 parameters in stress test. (#3676) waive gemma on L20 (#3766) https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758) Include Qwen2VLDecoderLayer in the smooth_qwen2_model function. fix: PP4 fixes and cleanup (#3688) remove benchmark test list (#3643) skip disagg deepseek test if sm!=90 (#3720) test: skip failed cases on B200 (#3710) * add skip condition to tests * fix error --------- test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718) * skip_pre_ada for fp8 cases * update * update after rebase --------- add know issue to deepseek doc. (#3800) Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761) Waive L0 tests (#3826) fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793) * Reduce memory usage in fused moe op associated with AutoTuning. * Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens. * Add free_memory logic of workspace in min_latency_mode fused moe path. * Fix fused_moe fallback issue. (#3652) min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression. --------- [doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797) Fix pre-commit Fix again Address some review comments for the MI Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
129 lines
4.6 KiB
Python
129 lines
4.6 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Module test_exaone test exaone examples."""
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
|
|
venv_mpi_check_call)
|
|
from defs.conftest import skip_post_blackwell
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
|
|
@pytest.mark.parametrize("num_beams", [1, 2, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("data_type", ['bfloat16', 'float16'])
|
|
@pytest.mark.parametrize("llm_exaone_model_root",
|
|
['exaone_3.0_7.8b_instruct', 'exaone_deep_2.4b'],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("use_weight_only",
|
|
[pytest.param(True, marks=skip_post_blackwell), False],
|
|
ids=["enable_weight_only", "disable_weight_only"])
|
|
def test_llm_exaone_1gpu(data_type, exaone_example_root, llm_exaone_model_root,
|
|
llama_example_root, llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir, num_beams,
|
|
use_weight_only):
|
|
|
|
print("Build engines...")
|
|
model_name = "exaone"
|
|
model_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
# NOTE
|
|
# EXAONE is based on llama so reuse llama's checkpoint converter
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_exaone_model_root,
|
|
data_type=data_type,
|
|
use_weight_only=use_weight_only)
|
|
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--max_beam_width={num_beams}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
rouge1_threshold = {
|
|
1: 22,
|
|
2: 22,
|
|
4: 23,
|
|
}[num_beams]
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(
|
|
exaone_example_root,
|
|
hf_model_dir=llm_exaone_model_root,
|
|
engine_dir=engine_dir,
|
|
data_type=data_type,
|
|
tensorrt_llm_rouge1_threshold=rouge1_threshold,
|
|
use_py_session=False,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root,
|
|
num_beams=num_beams,
|
|
)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
@pytest.mark.parametrize("num_beams", [1],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("data_type", ['float16'])
|
|
@pytest.mark.parametrize("llm_exaone_model_root",
|
|
['exaone_3.0_7.8b_instruct', 'exaone_deep_2.4b'],
|
|
indirect=True)
|
|
def test_llm_exaone_2gpu(data_type, exaone_example_root, llm_exaone_model_root,
|
|
llama_example_root, llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir, num_beams):
|
|
|
|
tp_size = 2
|
|
print("Build engines...")
|
|
model_name = "exaone"
|
|
model_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
# NOTE
|
|
# EXAONE is based on llama so reuse llama's checkpoint converter
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_exaone_model_root,
|
|
data_type=data_type,
|
|
tp_size=tp_size,
|
|
pp_size=1)
|
|
|
|
build_cmd = [
|
|
"trtllm-build", f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}", f"--max_beam_width={num_beams}"
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(
|
|
exaone_example_root,
|
|
hf_model_dir=llm_exaone_model_root,
|
|
engine_dir=engine_dir,
|
|
data_type=data_type,
|
|
tensorrt_llm_rouge1_threshold=22,
|
|
use_py_session=False,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root,
|
|
num_beams=num_beams,
|
|
)
|
|
|
|
venv_mpi_check_call(llm_venv,
|
|
["mpirun", "-n", f"{tp_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|