mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
137 lines
4.5 KiB
Python
137 lines
4.5 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, test_multi_lora_support,
|
|
venv_mpi_check_call)
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
|
|
@pytest.fixture(scope="module", autouse=True)
|
|
def disable_unified_converter():
|
|
os.environ['TRTLLM_DISABLE_UNIFIED_CONVERTER'] = '1'
|
|
yield
|
|
del os.environ['TRTLLM_DISABLE_UNIFIED_CONVERTER']
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
|
|
@pytest.mark.parametrize(
|
|
"llm_granite_model_root",
|
|
["granite-3.0-1b-a400m-instruct", "granite-3.0-2b-instruct"],
|
|
indirect=True)
|
|
def test_llm_granite(llama_example_root, llm_granite_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir, dtype):
|
|
print("Converting checkpoint...")
|
|
model_name = os.path.basename(llm_granite_model_root)
|
|
|
|
ckpt_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_granite_model_root,
|
|
data_type=dtype,
|
|
)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=924",
|
|
"--max_seq_len=1024",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--moe_plugin={dtype}",
|
|
f"--workers=1",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run engines...")
|
|
summary_cmd = [
|
|
f"{llama_example_root}/../../../summarize.py",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--hf_model_dir={llm_granite_model_root}",
|
|
f"--dataset_dir={llm_datasets_root}",
|
|
f"--rouge_dir={llm_rouge_root}"
|
|
"--test_trt_llm",
|
|
"--check_accuracy",
|
|
"--tensorrt_llm_rouge1_threshold=25",
|
|
"--batch_size=8",
|
|
"--max_ite=40",
|
|
]
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "1", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"llm_granite_model_root",
|
|
["granite-3.0-1b-a400m-instruct", "granite-3.0-2b-instruct"],
|
|
indirect=True)
|
|
def test_granite_bf16_lora(llama_example_root,
|
|
llm_datasets_root,
|
|
qcache_dir,
|
|
llm_rouge_root,
|
|
llm_venv,
|
|
engine_dir,
|
|
cmodel_dir,
|
|
llm_granite_model_root,
|
|
num_beams=1):
|
|
"Run Granite 3.0 models with multiple dummy LoRAs."
|
|
|
|
# TODO: Enable fp8 quantization when ModelOpt changes for Granite are available.
|
|
print("Converting checkpoint...")
|
|
model_name = os.path.basename(llm_granite_model_root)
|
|
dtype = 'bfloat16'
|
|
|
|
ckpt_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_granite_model_root,
|
|
data_type=dtype,
|
|
)
|
|
target_hf_modules = [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
]
|
|
target_trtllm_modules = [
|
|
"attn_q",
|
|
"attn_k",
|
|
"attn_v",
|
|
]
|
|
if model_name == "granite-3.0-1b-a400m-instruct":
|
|
target_hf_modules += ["moe_h_to_4h", "moe_4h_to_h", "moe_gate"]
|
|
target_trtllm_modules += ["moe_h_to_4h", "moe_4h_to_h", "moe_gate"]
|
|
|
|
test_multi_lora_support(
|
|
hf_model_dir=llm_granite_model_root,
|
|
tllm_ckpt_dir=ckpt_dir,
|
|
engine_dir=engine_dir,
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
num_loras=2,
|
|
lora_rank=8,
|
|
target_hf_modules=target_hf_modules,
|
|
target_trtllm_modules=target_trtllm_modules,
|
|
zero_lora_weights=True,
|
|
)
|