mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
116 lines
5.0 KiB
Python
116 lines
5.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
|
|
venv_mpi_check_call)
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
|
|
@pytest.mark.parametrize("gemm_plugin", [True, False],
|
|
ids=["enable_gemm_plugin", "disable_gemm_plugin"])
|
|
@pytest.mark.parametrize("dtype", ['bfloat16', 'float16'])
|
|
@pytest.mark.parametrize("mamba_model_root", [
|
|
'mamba-130m', 'mamba-2.8b', 'mamba-1.4b', 'mamba-790m', 'mamba-370m',
|
|
'mamba2-130m', 'mamba2-2.7b', 'mamba2-1.3b', 'mamba2-780m', 'mamba2-370m',
|
|
'mamba-codestral-7B-v0.1'
|
|
],
|
|
indirect=True)
|
|
def test_llm_mamba_1gpu(mamba_example_root, mamba_model_root,
|
|
llm_gptneox_model_root, llm_mathstral_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
gemm_plugin, dtype, cmodel_dir, engine_dir):
|
|
"Build & Run mamba model with one gpu"
|
|
print("Build engines...")
|
|
|
|
model_name = os.path.basename(mamba_model_root)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=mamba_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=mamba_model_root,
|
|
data_type=dtype)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--paged_kv_cache=disable",
|
|
"--max_batch_size=8",
|
|
]
|
|
if gemm_plugin:
|
|
build_cmd.append("--gemm_plugin=auto")
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print(f'Run {model_name}...')
|
|
tokenizer_dir = llm_mathstral_model_root if model_name == "mamba-codestral-7B-v0.1" else llm_gptneox_model_root
|
|
summary_cmd = generate_summary_cmd(mamba_example_root,
|
|
hf_model_dir=mamba_model_root,
|
|
tokenizer_dir=tokenizer_dir,
|
|
data_type=dtype,
|
|
engine_dir=engine_dir,
|
|
batch_size=8,
|
|
tensorrt_llm_rouge1_threshold="13.5",
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.parametrize("mamba_model_root", ['mamba-codestral-7B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mamba2_2gpu(mamba_example_root, mamba_model_root,
|
|
llm_gptneox_model_root, llm_mathstral_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir):
|
|
"Build & Run mamba2 model with two gpus"
|
|
print("Build engines...")
|
|
|
|
model_name = mamba_model_root.split('/')[-1]
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=mamba_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=mamba_model_root,
|
|
data_type='float16',
|
|
tp_size=2)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
"--gemm_plugin=auto",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--paged_kv_cache=disable",
|
|
"--max_batch_size=8",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print(f'Run {model_name}...')
|
|
tokenizer_dir = llm_mathstral_model_root
|
|
summary_cmd = generate_summary_cmd(mamba_example_root,
|
|
hf_model_dir=mamba_model_root,
|
|
tokenizer_dir=tokenizer_dir,
|
|
data_type='float16',
|
|
engine_dir=engine_dir,
|
|
batch_size=8,
|
|
tensorrt_llm_rouge1_threshold="19.0",
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
|
|
summary_cmd)
|