TensorRT-LLMs/cpp/tensorrt_llm/thop/mlaPreprocessOp.cpp
jmydurant 578dbc8d9a
feat: chunked prefill for MLA (Blackwell) (#4651)
Signed-off-by: Mingyang Jiang <13463932+jmydurant@users.noreply.github.com>
2025-06-26 09:01:00 +08:00

741 lines
34 KiB
C++

/*
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
#include "tensorrt_llm/kernels/mlaChunkedPrefill.cuh"
#include "tensorrt_llm/kernels/mlaKernels.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <cstdint>
#include <torch/extension.h>
namespace tk = tensorrt_llm::kernels;
namespace tc = tensorrt_llm::common;
using tk::KVBlockArray;
namespace torch_ext
{
namespace
{
template <typename T, typename TCache>
void loadPagedKVCacheForMLAHelper(torch::Tensor& compressed_kv, torch::Tensor& k_pe, KVBlockArray& kv_cache,
int const num_contexts, torch::Tensor const& cu_ctx_cached_kv_lens, int const max_input_seq_len,
int const lora_size, int const rope_size, float const* kv_scale_quant_orig_ptr)
{
auto stream = at::cuda::getCurrentCUDAStream(compressed_kv.get_device());
auto* compressed_kv_ptr = static_cast<T*>(compressed_kv.data_ptr());
auto* k_pe_ptr = static_cast<T*>(k_pe.data_ptr());
auto const* cu_ctx_cached_kv_lens_ptr = cu_ctx_cached_kv_lens.data_ptr<int64_t>();
tensorrt_llm::kernels::invokeMLALoadPagedKV<T, TCache>(compressed_kv_ptr, k_pe_ptr, kv_cache, num_contexts,
cu_ctx_cached_kv_lens_ptr, max_input_seq_len, lora_size, rope_size, kv_scale_quant_orig_ptr, stream);
}
template <typename T>
void loadChunkedKVCacheForMLAHelper(torch::Tensor& output_kv, torch::Tensor& output_k_pe, KVBlockArray& kv_cache,
int const num_contexts, torch::Tensor const& cu_ctx_chunked_len, int lora_size, int rope_size,
int const chunked_size, int const chunked_idx)
{
auto stream = at::cuda::getCurrentCUDAStream(output_kv.get_device());
T* output_kv_ptr = static_cast<T*>(output_kv.data_ptr());
T* output_k_pe_ptr = static_cast<T*>(output_k_pe.data_ptr());
tensorrt_llm::kernels::invokeMLALoadChunkedKV<T>(output_kv_ptr, output_k_pe_ptr, kv_cache, num_contexts,
cu_ctx_chunked_len.data_ptr<int64_t>(), lora_size, rope_size, chunked_size, chunked_idx, stream);
}
template <typename T>
void setPagedKVCacheForMLAHelper(torch::Tensor& output, torch::Tensor const& k, torch::Tensor const& v,
torch::Tensor const& k_pe, int const num_requests, torch::Tensor const& cu_seq_lens, int const max_input_seq_len,
int num_heads, int kv_dim, int rope_dim, int kv_cache_tokens_per_block, int64_t kv_token_stride)
{
auto stream = at::cuda::getCurrentCUDAStream(output.get_device());
auto* output_ptr = static_cast<T*>(output.data_ptr());
auto const* k_ptr = static_cast<T const*>(k.data_ptr());
auto const* v_ptr = static_cast<T const*>(v.data_ptr());
auto const* k_pe_ptr = static_cast<T const*>(k_pe.data_ptr());
auto const* cu_seq_lens_ptr = cu_seq_lens.data_ptr<int64_t>();
// cudaMemset is faster than torch::zeros
TLLM_CUDA_CHECK(cudaMemsetAsync(output_ptr, 0, output.numel() * torch::elementSize(output.scalar_type()), stream));
tensorrt_llm::kernels::invokeMLASetPagedKV<T>(output_ptr, k_ptr, v_ptr, k_pe_ptr, num_requests, cu_seq_lens_ptr,
max_input_seq_len, num_heads, kv_dim, rope_dim, kv_cache_tokens_per_block, kv_token_stride, stream);
}
template <typename T>
void setChunkedKVCacheForMLAHelper(torch::Tensor& output, torch::Tensor const& kv, torch::Tensor const& k_pe,
int const num_requests, torch::Tensor const& cu_seq_lens, int num_heads, int kv_dim, int rope_dim,
int kv_cache_tokens_per_block, int max_seq_len)
{
auto stream = at::cuda::getCurrentCUDAStream(output.get_device());
T* output_ptr = static_cast<T*>(output.data_ptr());
T* kv_ptr = static_cast<T*>(kv.data_ptr());
T* k_pe_ptr = static_cast<T*>(k_pe.data_ptr());
auto* cu_seq_lens_ptr = cu_seq_lens.data_ptr<int64_t>();
tensorrt_llm::kernels::invokeMLASetChunkedKV<T>(output_ptr, kv_ptr, k_pe_ptr, num_requests, max_seq_len, num_heads,
kv_dim, rope_dim, cu_seq_lens_ptr, kv_cache_tokens_per_block, stream);
}
template <typename T, typename TCache>
void invokeMLARopeAppendPagedKVAssignQHelper(KVBlockArray& kv_cache, torch::Tensor& q, torch::Tensor& latent_cache,
int const num_requests, torch::Tensor const& cu_ctx_cached_kv_lens, torch::Tensor const& cu_seq_lens,
int const max_input_uncached_seq_len, torch::Tensor const& cos_sin_cache, int const head_num, int const nope_size,
int const rope_size, int const lora_size, float const* kv_scale_orig_quant_ptr)
{
auto stream = at::cuda::getCurrentCUDAStream(q.get_device());
auto* q_ptr = static_cast<T*>(q.data_ptr());
auto* latent_cache_ptr = static_cast<T*>(latent_cache.data_ptr());
auto const* cu_ctx_cached_kv_lens_ptr = cu_ctx_cached_kv_lens.data_ptr<int64_t>();
auto const* cu_seq_lens_ptr = cu_seq_lens.data_ptr<int64_t>();
auto const* cos_sin_cache_ptr = static_cast<float2 const*>(cos_sin_cache.data_ptr());
tensorrt_llm::kernels::invokeMLARopeAppendPagedKVAssignQ<T, TCache>(kv_cache, q_ptr, latent_cache_ptr, num_requests,
cu_ctx_cached_kv_lens_ptr, cu_seq_lens_ptr, max_input_uncached_seq_len, cos_sin_cache_ptr, head_num, nope_size,
rope_size, lora_size, kv_scale_orig_quant_ptr, stream);
}
template <typename T>
void mergeChunkedAttentionForMLAHelper(torch::Tensor& merged_attn, torch::Tensor const& temp_attn,
torch::Tensor& merged_softmax_stats, torch::Tensor const& temp_softmax_stats, int64_t const num_requests,
torch::Tensor const& cu_q_seq_lens, int64_t const max_q_seq_len, torch::Tensor const& merge_op,
int64_t const num_heads, int64_t const head_size)
{
auto stream = at::cuda::getCurrentCUDAStream(merged_attn.get_device());
T* merged_attn_ptr = static_cast<T*>(merged_attn.data_ptr());
T* temp_attn_ptr = static_cast<T*>(temp_attn.data_ptr());
float* merged_softmax_stats_ptr = static_cast<float*>(merged_softmax_stats.data_ptr());
float* temp_softmax_stats_ptr = static_cast<float*>(temp_softmax_stats.data_ptr());
int64_t* const cu_q_seq_lens_ptr = cu_q_seq_lens.data_ptr<int64_t>();
int64_t* const merge_op_ptr = merge_op.data_ptr<int64_t>();
tensorrt_llm::kernels::invokeMergeAttnWithSoftmax(merged_attn_ptr, merged_softmax_stats_ptr, merged_attn_ptr,
merged_softmax_stats_ptr, temp_attn_ptr, temp_softmax_stats_ptr, num_requests, cu_q_seq_lens_ptr, max_q_seq_len,
merge_op_ptr, num_heads, head_size, stream);
}
/**
* Creates a KVBlockArray object for managing KV cache
*
* @param num_contexts Number of contexts
* @param max_blocks_per_sequence Maximum blocks per sequence
* @param tokens_per_block Number of tokens per block
* @param head_size Size of each head
* @param num_kv_heads Number of KV heads (1 for MLA)
* @param attention_window_size Attention window size
* @param sink_token_length Sink token length
* @param beam_width Beam width
* @param kv_cache_quant_mode KV cache quantization mode
* @param orig_dtype Original data type
* @param host_kv_cache_pool_pointers Host KV cache pool pointers
* @param host_kv_cache_pool_mapping Host KV cache pool mapping
* @param kv_cache_block_offsets KV cache block offsets
* @param layer_idx Layer index
* @return Constructed KVBlockArray object
*/
KVBlockArray createKVBlockArray(int num_contexts, int max_blocks_per_sequence, int tokens_per_block, int head_size,
int num_kv_heads, int attention_window_size, int sink_token_length, int beam_width,
tc::QuantMode kv_cache_quant_mode, torch::Dtype orig_dtype, torch::Tensor const& host_kv_cache_pool_pointers,
torch::Tensor const& host_kv_cache_pool_mapping, torch::Tensor const& kv_cache_block_offsets, int layer_idx)
{
auto const orig_elem_size = torch::elementSize(orig_dtype);
auto const cache_elem_size = kv_cache_quant_mode.hasKvCacheQuant() ? sizeof(int8_t) : orig_elem_size;
auto const size_per_token = num_kv_heads * head_size * cache_elem_size;
int const cyclic_attention_window_size = attention_window_size;
int const max_cyclic_attention_window_size = attention_window_size;
bool const can_use_one_more_block = beam_width > 1;
auto const pool_index = host_kv_cache_pool_mapping.index({layer_idx, 0}).item<int32_t>();
auto const layer_idx_in_cache_pool = host_kv_cache_pool_mapping.index({layer_idx, 1}).item<int32_t>();
int32_t const seq_offset = 0;
KVBlockArray::DataType* block_offsets
= static_cast<KVBlockArray::DataType*>(kv_cache_block_offsets.index({pool_index, seq_offset}).data_ptr());
auto const block_size = tokens_per_block * num_kv_heads * head_size;
auto const bytes_per_block = block_size * cache_elem_size;
int32_t const kv_factor = 1; // always 1 for MLA
auto const intra_pool_offset = layer_idx_in_cache_pool * kv_factor * bytes_per_block;
void* host_primary_pool_pointer = reinterpret_cast<void*>(
reinterpret_cast<char*>(host_kv_cache_pool_pointers.index({pool_index, 0}).item<int64_t>())
+ intra_pool_offset);
void* host_secondary_pool_pointer = reinterpret_cast<void*>(
reinterpret_cast<char*>(host_kv_cache_pool_pointers.index({pool_index, 1}).item<int64_t>())
+ intra_pool_offset);
return KVBlockArray(num_contexts, max_blocks_per_sequence, tokens_per_block, size_per_token,
cyclic_attention_window_size, max_cyclic_attention_window_size, sink_token_length, can_use_one_more_block,
host_primary_pool_pointer, host_secondary_pool_pointer, block_offsets);
}
} // namespace
std::vector<torch::Tensor> loadPagedKVCacheForMLA(torch::ScalarType out_dtype, int64_t const num_contexts,
int64_t const num_ctx_cached_tokens, int64_t const max_ctx_cached_kv_len, torch::Tensor& cu_ctx_cached_kv_lens,
torch::Tensor const& kv_cache_block_offsets, torch::Tensor const& host_kv_cache_block_offsets,
torch::Tensor const& host_kv_cache_pool_pointers, torch::Tensor const& host_kv_cache_pool_mapping,
torch::optional<torch::Tensor> kv_scale_orig_quant, torch::optional<torch::Tensor> kv_scale_quant_orig,
int64_t const layer_idx, int64_t const lora_size, int64_t const rope_size, int64_t const tokens_per_block,
int64_t const attention_window_size, int64_t const sink_token_length, int64_t const beam_width,
int64_t const quant_mode)
{
TORCH_CHECK(out_dtype == torch::kFloat16 || out_dtype == torch::kFloat32 || out_dtype == torch::kBFloat16,
"out_dtype only support float16, float32, bfloat16");
TLLM_CHECK(num_contexts > 0);
TORCH_CHECK(num_ctx_cached_tokens > 0);
TLLM_CHECK(max_ctx_cached_kv_len > 0);
CHECK_INPUT(cu_ctx_cached_kv_lens, torch::kInt64);
TORCH_CHECK(cu_ctx_cached_kv_lens.dim() == 1);
TORCH_CHECK(cu_ctx_cached_kv_lens.size(0) >= num_contexts + 1);
auto kv_cache_quant_mode = tc::QuantMode(static_cast<uint32_t>(quant_mode));
int max_blocks_per_sequence = kv_cache_block_offsets.size(-1);
int head_size = lora_size + rope_size;
KVBlockArray kv_cache_buffer
= createKVBlockArray(num_contexts, max_blocks_per_sequence, tokens_per_block, head_size,
1, // num_kv_heads is always 1 for MLA
attention_window_size, sink_token_length, beam_width, kv_cache_quant_mode, out_dtype,
host_kv_cache_pool_pointers, host_kv_cache_pool_mapping, kv_cache_block_offsets, layer_idx);
float const* kv_scale_orig_quant_ptr = nullptr;
float const* kv_scale_quant_orig_ptr = nullptr;
if (kv_cache_quant_mode.hasKvCacheQuant())
{
TLLM_CHECK_WITH_INFO(kv_cache_quant_mode.hasFp8KvCache(), "Only FP8 KV cache is supported for now");
TORCH_CHECK(kv_scale_orig_quant.has_value());
TORCH_CHECK(kv_scale_quant_orig.has_value());
kv_scale_orig_quant_ptr = kv_scale_orig_quant.value().data_ptr<float>();
kv_scale_quant_orig_ptr = kv_scale_quant_orig.value().data_ptr<float>();
TLLM_CHECK(kv_scale_orig_quant_ptr != nullptr);
TLLM_CHECK(kv_scale_quant_orig_ptr != nullptr);
}
std::vector<torch::Tensor> outputs;
// compressed_kv {num_ctx_cached_tokens, lora_size}
outputs.push_back(torch::empty(
{num_ctx_cached_tokens, lora_size}, torch::dtype(out_dtype).device(torch::kCUDA).requires_grad(false)));
// k_pe {num_ctx_cached_tokens, rope_size}
outputs.push_back(torch::empty(
{num_ctx_cached_tokens, rope_size}, torch::dtype(out_dtype).device(torch::kCUDA).requires_grad(false)));
if (out_dtype == torch::kFloat16)
{
if (kv_cache_quant_mode.hasFp8KvCache())
{
loadPagedKVCacheForMLAHelper<half, __nv_fp8_e4m3>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_cached_kv_lens, max_ctx_cached_kv_len, lora_size, rope_size, kv_scale_quant_orig_ptr);
}
else
{
loadPagedKVCacheForMLAHelper<half, half>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_cached_kv_lens, max_ctx_cached_kv_len, lora_size, rope_size, kv_scale_quant_orig_ptr);
}
}
else if (out_dtype == torch::kFloat32)
{
if (kv_cache_quant_mode.hasFp8KvCache())
{
loadPagedKVCacheForMLAHelper<float, __nv_fp8_e4m3>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_cached_kv_lens, max_ctx_cached_kv_len, lora_size, rope_size, kv_scale_quant_orig_ptr);
}
else
{
loadPagedKVCacheForMLAHelper<float, float>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_cached_kv_lens, max_ctx_cached_kv_len, lora_size, rope_size, kv_scale_quant_orig_ptr);
}
}
else if (out_dtype == torch::kBFloat16)
{
if (kv_cache_quant_mode.hasFp8KvCache())
{
loadPagedKVCacheForMLAHelper<__nv_bfloat16, __nv_fp8_e4m3>(outputs[0], outputs[1], kv_cache_buffer,
num_contexts, cu_ctx_cached_kv_lens, max_ctx_cached_kv_len, lora_size, rope_size,
kv_scale_quant_orig_ptr);
}
else
{
loadPagedKVCacheForMLAHelper<__nv_bfloat16, __nv_bfloat16>(outputs[0], outputs[1], kv_cache_buffer,
num_contexts, cu_ctx_cached_kv_lens, max_ctx_cached_kv_len, lora_size, rope_size,
kv_scale_quant_orig_ptr);
}
}
return outputs;
}
std::vector<torch::Tensor> loadChunkedKVCacheForMLA(torch::ScalarType out_dtype, int64_t const num_contexts,
int64_t const num_ctx_cached_tokens, torch::Tensor& cu_ctx_chunked_kv_lens,
torch::Tensor const& kv_cache_block_offsets, torch::Tensor const& host_kv_cache_pool_pointers,
torch::Tensor const& host_kv_cache_pool_mapping, torch::optional<torch::Tensor> kv_scale_orig_quant,
torch::optional<torch::Tensor> kv_scale_quant_orig, int64_t const layer_idx, int64_t const lora_size,
int64_t const rope_size, int64_t const tokens_per_block, int64_t const chunked_size, int64_t const chunked_index,
int64_t const attention_window_size, int64_t const sink_token_length, int64_t const beam_width,
int64_t const quant_mode)
{
TORCH_CHECK(out_dtype == torch::kFloat16 || out_dtype == torch::kFloat32 || out_dtype == torch::kBFloat16,
"out_dtype only support float16, float32, bfloat16");
TLLM_CHECK(num_contexts > 0);
CHECK_INPUT(cu_ctx_chunked_kv_lens, torch::kInt64);
TORCH_CHECK(cu_ctx_chunked_kv_lens.dim() == 1);
TORCH_CHECK(cu_ctx_chunked_kv_lens.size(0) >= num_contexts + 1);
int head_size = lora_size + rope_size;
auto kv_cache_quant_mode = tc::QuantMode(static_cast<uint32_t>(quant_mode));
int max_blocks_per_sequence = kv_cache_block_offsets.size(-1);
KVBlockArray kv_cache_buffer
= createKVBlockArray(num_contexts, max_blocks_per_sequence, tokens_per_block, head_size,
1, // num_kv_heads is always 1 for MLA
attention_window_size, sink_token_length, beam_width, kv_cache_quant_mode, out_dtype,
host_kv_cache_pool_pointers, host_kv_cache_pool_mapping, kv_cache_block_offsets, layer_idx);
float const* kv_scale_orig_quant_ptr = nullptr;
float const* kv_scale_quant_orig_ptr = nullptr;
if (kv_cache_quant_mode.hasKvCacheQuant())
{
TORCH_CHECK(kv_scale_orig_quant.has_value());
TORCH_CHECK(kv_scale_quant_orig.has_value());
kv_scale_orig_quant_ptr = kv_scale_orig_quant.value().data_ptr<float>();
kv_scale_quant_orig_ptr = kv_scale_quant_orig.value().data_ptr<float>();
TLLM_CHECK(kv_scale_orig_quant_ptr != nullptr);
TLLM_CHECK(kv_scale_quant_orig_ptr != nullptr);
}
std::vector<torch::Tensor> outputs;
// compressed_kv {num_ctx_cached_tokens, lora_size}
outputs.push_back(torch::empty(
{num_ctx_cached_tokens, lora_size}, torch::dtype(out_dtype).device(torch::kCUDA).requires_grad(false)));
// k_pe {num_ctx_cached_tokens, rope_size}
outputs.push_back(torch::empty(
{num_ctx_cached_tokens, rope_size}, torch::dtype(out_dtype).device(torch::kCUDA).requires_grad(false)));
if (out_dtype == torch::kFloat16)
{
loadChunkedKVCacheForMLAHelper<half>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_chunked_kv_lens, lora_size, rope_size, chunked_size, chunked_index);
}
else if (out_dtype == torch::kFloat32)
{
loadChunkedKVCacheForMLAHelper<float>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_chunked_kv_lens, lora_size, rope_size, chunked_size, chunked_index);
}
else if (out_dtype == torch::kBFloat16)
{
loadChunkedKVCacheForMLAHelper<__nv_bfloat16>(outputs[0], outputs[1], kv_cache_buffer, num_contexts,
cu_ctx_chunked_kv_lens, lora_size, rope_size, chunked_size, chunked_index);
}
return outputs;
}
torch::Tensor setPagedKVCacheForMLA(torch::Tensor& output, torch::Tensor const& k, torch::Tensor const& v,
torch::Tensor const& k_pe, int64_t const num_requests, torch::Tensor const& cu_seq_lens,
int64_t const max_input_seq_len, int64_t const num_heads, int64_t const kv_dim, int64_t const rope_dim,
int64_t const kv_cache_tokens_per_block)
{
TORCH_CHECK(output.numel() > 0);
auto output_dtype = output.scalar_type();
TORCH_CHECK(output_dtype == torch::kFloat16 || output_dtype == torch::kFloat32 || output_dtype == torch::kBFloat16);
CHECK_TH_CUDA(output);
CHECK_CONTIGUOUS(output);
// k and v can be non-contiguous
CHECK_TH_CUDA(k);
CHECK_TYPE(k, output_dtype);
CHECK_TH_CUDA(v);
CHECK_TYPE(v, output_dtype);
TORCH_CHECK(k.dim() == 3);
TORCH_CHECK(v.dim() == 3);
TORCH_CHECK(k.size(0) == v.size(0));
TORCH_CHECK(k.size(1) == v.size(1));
TORCH_CHECK(k.size(2) == v.size(2));
TORCH_CHECK(k.stride(1) == k.size(2));
TORCH_CHECK(v.stride(1) == v.size(2));
TORCH_CHECK(k.stride(2) == 1);
TORCH_CHECK(v.stride(2) == 1);
// k and v should have the same token stride
int64_t k_token_stride = k.stride(0);
int64_t v_token_stride = v.stride(0);
TORCH_CHECK(k_token_stride == v_token_stride);
// k_pe should be contiguous
CHECK_INPUT(k_pe, output_dtype);
CHECK_INPUT(cu_seq_lens, torch::kInt64);
TORCH_CHECK(cu_seq_lens.dim() == 1);
TORCH_CHECK(cu_seq_lens.size(0) >= num_requests + 1);
if (output_dtype == torch::kFloat16)
{
setPagedKVCacheForMLAHelper<half>(output, k, v, k_pe, num_requests, cu_seq_lens, max_input_seq_len, num_heads,
kv_dim, rope_dim, kv_cache_tokens_per_block, k_token_stride);
}
else if (output_dtype == torch::kFloat32)
{
setPagedKVCacheForMLAHelper<float>(output, k, v, k_pe, num_requests, cu_seq_lens, max_input_seq_len, num_heads,
kv_dim, rope_dim, kv_cache_tokens_per_block, k_token_stride);
}
else if (output_dtype == torch::kBFloat16)
{
setPagedKVCacheForMLAHelper<__nv_bfloat16>(output, k, v, k_pe, num_requests, cu_seq_lens, max_input_seq_len,
num_heads, kv_dim, rope_dim, kv_cache_tokens_per_block, k_token_stride);
}
int64_t max_block_num = (max_input_seq_len + kv_cache_tokens_per_block - 1) / kv_cache_tokens_per_block;
torch::Tensor faked_kv_cache_block_offsets = torch::arange(
0, num_requests * 2 * max_block_num, torch::TensorOptions().dtype(torch::kInt32).device(output.device()));
faked_kv_cache_block_offsets = faked_kv_cache_block_offsets.view({num_requests, 2, max_block_num});
return faked_kv_cache_block_offsets;
}
torch::Tensor setChunkedKVCacheForMLA(torch::Tensor& output, torch::Tensor const& kv, torch::Tensor const& k_pe,
int64_t const num_requests, torch::Tensor const& cu_seq_lens, int64_t const num_heads, int64_t const kv_dim,
int64_t const rope_dim, int64_t const kv_cache_tokens_per_block, int64_t const max_seq_len)
{
TORCH_CHECK(output.numel() > 0);
TORCH_CHECK(output.scalar_type() == torch::kFloat16 || output.scalar_type() == torch::kFloat32
|| output.scalar_type() == torch::kBFloat16);
CHECK_TH_CUDA(output);
CHECK_CONTIGUOUS(output);
CHECK_INPUT(kv, output.scalar_type());
CHECK_INPUT(k_pe, output.scalar_type());
CHECK_INPUT(cu_seq_lens, torch::kInt64);
TORCH_CHECK(cu_seq_lens.dim() == 1);
TORCH_CHECK(cu_seq_lens.size(0) >= num_requests + 1);
if (output.scalar_type() == torch::kFloat16)
{
setChunkedKVCacheForMLAHelper<half>(output, kv, k_pe, num_requests, cu_seq_lens, num_heads, kv_dim, rope_dim,
kv_cache_tokens_per_block, max_seq_len);
}
else if (output.scalar_type() == torch::kFloat32)
{
setChunkedKVCacheForMLAHelper<float>(output, kv, k_pe, num_requests, cu_seq_lens, num_heads, kv_dim, rope_dim,
kv_cache_tokens_per_block, max_seq_len);
}
else if (output.scalar_type() == torch::kBFloat16)
{
setChunkedKVCacheForMLAHelper<__nv_bfloat16>(output, kv, k_pe, num_requests, cu_seq_lens, num_heads, kv_dim,
rope_dim, kv_cache_tokens_per_block, max_seq_len);
}
int64_t max_block_num = (max_seq_len + kv_cache_tokens_per_block - 1) / kv_cache_tokens_per_block;
// TODO: actually this offset is always the same for all requests and all layers.
torch::Tensor faked_kv_cache_block_offsets = torch::arange(
0, num_requests * 2 * max_block_num, torch::TensorOptions().dtype(torch::kInt32).device(output.device()));
faked_kv_cache_block_offsets = faked_kv_cache_block_offsets.view({num_requests, 2, max_block_num});
return faked_kv_cache_block_offsets;
}
void MLARopeAppendPagedKVAssignQ(torch::Tensor& q, torch::Tensor& latent_cache, int64_t const num_contexts,
torch::Tensor const& cu_ctx_cached_kv_lens, torch::Tensor const& cu_seq_lens,
int64_t const max_input_uncached_seq_len, torch::Tensor const& cos_sin_cache, int64_t const head_num,
int64_t const nope_size, int64_t const rope_size, int64_t const lora_size,
torch::Tensor const& kv_cache_block_offsets, torch::Tensor const& host_kv_cache_block_offsets,
torch::Tensor const& host_kv_cache_pool_pointers, torch::Tensor const& host_kv_cache_pool_mapping,
torch::optional<torch::Tensor> kv_scale_orig_quant, torch::optional<torch::Tensor> kv_scale_quant_orig,
int64_t const layer_idx, int64_t const tokens_per_block, int64_t const attention_window_size,
int64_t const sink_token_length, int64_t const beam_width, int64_t const quant_mode)
{
auto input_dtype = q.scalar_type();
TORCH_CHECK(input_dtype == torch::kFloat16 || input_dtype == torch::kFloat32 || input_dtype == torch::kBFloat16);
TORCH_CHECK(q.numel() > 0);
TORCH_CHECK(q.dim() == 2);
CHECK_TH_CUDA(q);
CHECK_CONTIGUOUS(q);
CHECK_INPUT(latent_cache, input_dtype);
TORCH_CHECK(latent_cache.dim() == 2);
CHECK_INPUT(cu_seq_lens, torch::kInt64);
TORCH_CHECK(cu_seq_lens.dim() == 1);
TORCH_CHECK(cu_seq_lens.size(0) >= num_contexts + 1);
CHECK_INPUT(cu_ctx_cached_kv_lens, torch::kInt64);
TORCH_CHECK(cu_ctx_cached_kv_lens.dim() == 1);
TORCH_CHECK(cu_ctx_cached_kv_lens.size(0) >= num_contexts + 1);
TORCH_CHECK(max_input_uncached_seq_len > 0);
auto kv_cache_quant_mode = tc::QuantMode(static_cast<uint32_t>(quant_mode));
int max_blocks_per_sequence = kv_cache_block_offsets.size(-1);
int head_size = lora_size + rope_size;
KVBlockArray kv_cache_buffer
= createKVBlockArray(num_contexts, max_blocks_per_sequence, tokens_per_block, head_size,
1, // num_kv_heads is always 1 for MLA
attention_window_size, sink_token_length, beam_width, kv_cache_quant_mode, input_dtype,
host_kv_cache_pool_pointers, host_kv_cache_pool_mapping, kv_cache_block_offsets, layer_idx);
float const* kv_scale_orig_quant_ptr = nullptr;
float const* kv_scale_quant_orig_ptr = nullptr;
if (kv_cache_quant_mode.hasKvCacheQuant())
{
TLLM_CHECK_WITH_INFO(kv_cache_quant_mode.hasFp8KvCache(), "Only FP8 KV cache is supported for now");
TORCH_CHECK(kv_scale_orig_quant.has_value());
TORCH_CHECK(kv_scale_quant_orig.has_value());
kv_scale_orig_quant_ptr = kv_scale_orig_quant.value().data_ptr<float>();
kv_scale_quant_orig_ptr = kv_scale_quant_orig.value().data_ptr<float>();
TLLM_CHECK(kv_scale_orig_quant_ptr != nullptr);
TLLM_CHECK(kv_scale_quant_orig_ptr != nullptr);
}
if (input_dtype == torch::kFloat16)
{
if (kv_cache_quant_mode.hasFp8KvCache())
{
invokeMLARopeAppendPagedKVAssignQHelper<half, __nv_fp8_e4m3>(kv_cache_buffer, q, latent_cache, num_contexts,
cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num, nope_size,
rope_size, lora_size, kv_scale_orig_quant_ptr);
}
else
{
invokeMLARopeAppendPagedKVAssignQHelper<half, half>(kv_cache_buffer, q, latent_cache, num_contexts,
cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num, nope_size,
rope_size, lora_size, kv_scale_orig_quant_ptr);
}
}
else if (input_dtype == torch::kFloat32)
{
if (kv_cache_quant_mode.hasFp8KvCache())
{
invokeMLARopeAppendPagedKVAssignQHelper<float, __nv_fp8_e4m3>(kv_cache_buffer, q, latent_cache,
num_contexts, cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num,
nope_size, rope_size, lora_size, kv_scale_orig_quant_ptr);
}
else
{
invokeMLARopeAppendPagedKVAssignQHelper<float, float>(kv_cache_buffer, q, latent_cache, num_contexts,
cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num, nope_size,
rope_size, lora_size, kv_scale_orig_quant_ptr);
}
}
else if (input_dtype == torch::kBFloat16)
{
if (kv_cache_quant_mode.hasFp8KvCache())
{
invokeMLARopeAppendPagedKVAssignQHelper<__nv_bfloat16, __nv_fp8_e4m3>(kv_cache_buffer, q, latent_cache,
num_contexts, cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num,
nope_size, rope_size, lora_size, kv_scale_orig_quant_ptr);
}
else
{
invokeMLARopeAppendPagedKVAssignQHelper<__nv_bfloat16, __nv_bfloat16>(kv_cache_buffer, q, latent_cache,
num_contexts, cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num,
nope_size, rope_size, lora_size, kv_scale_orig_quant_ptr);
}
}
}
void mergeChunkedAttentionForMLA(torch::Tensor& merged_attn, torch::Tensor const& temp_attn,
torch::Tensor& merged_softmax_stats, torch::Tensor const& temp_softmax_stats, int64_t const num_requests,
torch::Tensor const& cu_q_seq_lens, int64_t const max_q_seq_len, torch::Tensor const& merge_op,
int64_t const num_heads, int64_t const head_size)
{
TORCH_CHECK(merged_attn.numel() > 0);
TORCH_CHECK(temp_attn.numel() > 0);
TORCH_CHECK(merged_attn.scalar_type() == temp_attn.scalar_type());
TORCH_CHECK(merged_attn.scalar_type() == torch::kFloat16 || merged_attn.scalar_type() == torch::kFloat32
|| merged_attn.scalar_type() == torch::kBFloat16);
TORCH_CHECK(temp_softmax_stats.scalar_type() == merged_softmax_stats.scalar_type());
TORCH_CHECK(merged_softmax_stats.scalar_type() == torch::kFloat32);
if (merged_attn.scalar_type() == torch::kFloat16)
{
mergeChunkedAttentionForMLAHelper<half>(merged_attn, temp_attn, merged_softmax_stats, temp_softmax_stats,
num_requests, cu_q_seq_lens, max_q_seq_len, merge_op, num_heads, head_size);
}
else if (merged_attn.scalar_type() == torch::kFloat32)
{
mergeChunkedAttentionForMLAHelper<float>(merged_attn, temp_attn, merged_softmax_stats, temp_softmax_stats,
num_requests, cu_q_seq_lens, max_q_seq_len, merge_op, num_heads, head_size);
}
else if (merged_attn.scalar_type() == torch::kBFloat16)
{
mergeChunkedAttentionForMLAHelper<__nv_bfloat16>(merged_attn, temp_attn, merged_softmax_stats,
temp_softmax_stats, num_requests, cu_q_seq_lens, max_q_seq_len, merge_op, num_heads, head_size);
}
}
} // namespace torch_ext
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"load_paged_kv_cache_for_mla("
"ScalarType out_dtype"
", int num_contexts"
", int num_ctx_cached_tokens"
", int max_ctx_cached_kv_len"
", Tensor cu_ctx_cached_kv_lens"
", Tensor kv_cache_block_offsets"
", Tensor host_kv_cache_block_offsets"
", Tensor host_kv_cache_pool_pointers"
", Tensor host_kv_cache_pool_mapping"
", Tensor? kv_scale_orig_quant"
", Tensor? kv_scale_quant_orig"
", int layer_idx"
", int lora_size"
", int rope_size"
", int tokens_per_block"
", int attention_window_size"
", int sink_token_length"
", int beam_width"
", int quant_mode"
") -> Tensor[]");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("load_paged_kv_cache_for_mla", &torch_ext::loadPagedKVCacheForMLA);
}
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"load_chunked_kv_cache_for_mla("
"ScalarType out_dtype"
", int num_contexts"
", int num_ctx_cached_tokens"
", Tensor cu_ctx_chunked_kv_lens"
", Tensor kv_cache_block_offsets"
", Tensor host_kv_cache_pool_pointers"
", Tensor host_kv_cache_pool_mapping"
", Tensor? kv_scale_orig_quant"
", Tensor? kv_scale_quant_orig"
", int layer_idx"
", int lora_size"
", int rope_size"
", int tokens_per_block"
", int chunked_size"
", int chunked_index"
", int attention_window_size"
", int sink_token_length"
", int beam_width"
", int quant_mode"
") -> Tensor[]");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("load_chunked_kv_cache_for_mla", &torch_ext::loadChunkedKVCacheForMLA);
}
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"set_paged_kv_cache_for_mla("
"Tensor output"
", Tensor k"
", Tensor v"
", Tensor k_pe"
", int num_requests"
", Tensor cu_seq_lens"
", int max_input_seq_len"
", int num_heads"
", int kv_dim"
", int rope_dim"
", int kv_cache_tokens_per_block"
") -> Tensor");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("set_paged_kv_cache_for_mla", &torch_ext::setPagedKVCacheForMLA);
}
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"set_chunked_kv_cache_for_mla("
"Tensor output"
", Tensor kv"
", Tensor k_pe"
", int num_requests"
", Tensor cu_seq_lens"
", int num_heads"
", int kv_dim"
", int rope_dim"
", int kv_cache_tokens_per_block"
", int max_seq_len"
") -> Tensor");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("set_chunked_kv_cache_for_mla", &torch_ext::setChunkedKVCacheForMLA);
}
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"mla_rope_append_paged_kv_assign_q("
"Tensor q"
", Tensor latent_cache"
", int num_contexts"
", Tensor cu_ctx_cached_kv_lens"
", Tensor cu_seq_lens"
", int max_input_uncached_seq_len"
", Tensor cos_sin_cache"
", int head_num"
", int nope_size"
", int rope_size"
", int lora_size"
", Tensor kv_cache_block_offsets"
", Tensor host_kv_cache_block_offsets"
", Tensor host_kv_cache_pool_pointers"
", Tensor host_kv_cache_pool_mapping"
", Tensor? kv_scale_orig_quant"
", Tensor? kv_scale_quant_orig"
", int layer_idx"
", int tokens_per_block"
", int attention_window_size"
", int sink_token_length"
", int beam_width"
", int quant_mode"
") -> ()");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("mla_rope_append_paged_kv_assign_q", &torch_ext::MLARopeAppendPagedKVAssignQ);
}
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"merge_chunked_attention_for_mla("
"Tensor merged_attn"
", Tensor temp_attn"
", Tensor merged_softmax_stats"
", Tensor temp_softmax_stats"
", int num_requests"
", Tensor cu_q_seq_lens"
", int max_q_seq_len"
", Tensor merge_op"
", int num_heads"
", int head_size"
") -> ()");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("merge_chunked_attention_for_mla", &torch_ext::mergeChunkedAttentionForMLA);
}