TensorRT-LLMs/cpp/include/tensorrt_llm/batch_manager/inferenceRequest.h
2023-10-10 23:22:17 -07:00

195 lines
5.7 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cassert>
#include <chrono>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <string>
#include <thread>
#include <tuple>
#include <vector>
#include "tensorrt_llm/batch_manager/NamedTensor.h"
#include "tensorrt_llm/runtime/iTensor.h"
namespace tensorrt_llm::batch_manager
{
class InferenceRequest
{
public:
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
using TensorMap = tensorrt_llm::runtime::StringPtrMap<tensorrt_llm::runtime::ITensor>;
InferenceRequest(uint64_t requestId)
: mRequestId(requestId)
, mIsStreaming(false)
{
}
InferenceRequest(TensorMap const& inputTensors, uint64_t requestId)
: mInputTensors(inputTensors)
, mRequestId(requestId)
, mIsStreaming(false)
{
}
InferenceRequest(TensorMap&& inputTensors, uint64_t requestId)
: mInputTensors(std::move(inputTensors))
, mRequestId(requestId)
, mIsStreaming(false)
{
}
~InferenceRequest() {}
template <typename T>
std::tuple<bool, T> getScalarValueFromTensor(
const std::string& inputTensorName, const std::vector<int64_t>& expectedShape, const bool is_optional) const
{
T scalarValue;
try
{
const auto& t = getInputTensor(inputTensorName);
std::vector<int64_t> tensorShape(t->getShape().nbDims);
for (int32_t i = 0; i < t->getShape().nbDims; ++i)
{
tensorShape[i] = t->getShape().d[i];
}
if (tensorShape != expectedShape)
{
std::string err = "Invalid shape for " + inputTensorName + ". Expected shape: [";
for (auto shape : expectedShape)
{
err += std::to_string(shape) + ",";
}
if (!expectedShape.empty())
{
// Remove last comma
err.pop_back();
}
err += "]";
throw std::runtime_error(err);
}
scalarValue = *static_cast<T*>(t->data());
}
catch (const std::exception& e)
{
// If parameter is optional, just ignore it
if (is_optional)
{
return {false, scalarValue};
}
else
{
std::cerr << "Out of Range error for tensor: " << inputTensorName << ": " << e.what() << '\n';
throw;
}
}
return {true, scalarValue};
}
const TensorPtr& getInputTensor(std::string const& inputTensorName) const
{
return mInputTensors.at(inputTensorName);
}
void emplaceInputTensor(std::string const& inputTensorName, TensorPtr&& inputTensor)
{
mInputTensors.emplace(inputTensorName, std::move(inputTensor));
}
void setIsStreaming(bool isStreaming)
{
mIsStreaming = isStreaming;
}
bool isStreaming() const
{
return mIsStreaming;
}
uint64_t getRequestId() const
{
return mRequestId;
}
const std::vector<int64_t> serialize() const
{
std::list<int64_t> packed;
// mInputTensors
packed.push_back(static_cast<int64_t>(mInputTensors.size()));
for (auto it = mInputTensors.begin(); it != mInputTensors.end(); ++it)
{
NamedTensor nt(it->second, it->first);
auto packed_tensor = nt.serialize();
packed.push_back(static_cast<int64_t>(packed_tensor.size()));
packed.insert(packed.end(), packed_tensor.begin(), packed_tensor.end());
}
// mRequestId
packed.push_back(static_cast<int64_t>(mRequestId));
// mIsStreaming
packed.push_back(mIsStreaming ? 1 : 0);
// done
std::vector<int64_t> vpacked{
std::make_move_iterator(std::begin(packed)), std::make_move_iterator(std::end(packed))};
return vpacked;
}
static std::shared_ptr<InferenceRequest> deserialize(const std::vector<int64_t>& packed)
{
return InferenceRequest::deserialize(packed.data());
}
static std::shared_ptr<InferenceRequest> deserialize(const int64_t* packed_ptr)
{
int64_t num_tensors = *packed_ptr++;
TensorMap InputTensors;
for (int64_t i = 0; i < num_tensors; ++i)
{
int64_t n = *packed_ptr++;
auto inputTensor = NamedTensor::deserialize(packed_ptr);
packed_ptr += n;
auto inputTensorName = inputTensor.name;
InputTensors.emplace(inputTensorName, std::move(inputTensor.tensor));
}
uint64_t RequestId = static_cast<uint64_t>(*packed_ptr++);
bool IsStreaming = *packed_ptr++ != 0;
std::shared_ptr<InferenceRequest> ir = std::make_shared<InferenceRequest>(InputTensors, RequestId);
ir->setIsStreaming(IsStreaming);
return ir;
}
private:
TensorMap mInputTensors;
uint64_t mRequestId;
bool mIsStreaming;
};
} // namespace tensorrt_llm::batch_manager