TensorRT-LLMs/examples/chatglm/build.py
Kaiyu Xie 587d063e6d
Update TensorRT-LLM (#506)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-30 16:46:22 +08:00

775 lines
28 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import time
from pathlib import Path
from typing import List
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from visualize import to_onnx
from weight import get_scaling_factors, load_from_hf
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import ChatGLMHeadModel, quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.profiler import check_gpt_mem_usage
from tensorrt_llm.quantization import QuantMode
def get_engine_name(model, dtype, tp_size, pp_size, rank):
if pp_size == 1:
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
return '{}_{}_tp{}_pp{}_rank{}.engine'.format(model, dtype, tp_size,
pp_size, rank)
def find_engines(dir: Path,
model_name: str = "*",
dtype: str = "*",
tp_size: str = "*",
rank: str = "*") -> List[Path]:
template = f"{model_name}_{dtype}_tp{tp_size}_rank{rank}.engine"
return list(dir.glob(template))
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def truncate_input_output_len(
max_input_len,
max_output_len,
max_seq_length_from_config,
is_fixed_max_position_length=False,
):
max_seq_length = max_seq_length_from_config
if max_input_len >= max_seq_length_from_config:
print("Truncate max_input_len as %d" % (max_seq_length_from_config - 1))
max_input_len = max_seq_length_from_config - 1
max_output_len = 1
elif max_input_len + max_output_len > max_seq_length_from_config:
print("Truncate max_output_len as %d" %
(max_seq_length_from_config - max_input_len))
max_output_len = max_seq_length_from_config - max_input_len
elif not is_fixed_max_position_length:
max_seq_length = max_input_len + max_output_len
return max_input_len, max_output_len, max_seq_length
def parse_arguments(args):
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
'-m',
type=str,
required=True,
choices=[
"chatglm_6b", "chatglm2_6b", "chatglm2_6b_32k", "chatglm3_6b",
"chatglm3_6b_base", "chatglm3_6b_32k", "glm_10b"
],
help=
'the name of the model, use "_" rather than "-" to connect the name parts'
)
parser.add_argument(
'--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now',
)
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--pp_size', type=int, default=1)
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--quant_ckpt_path', type=str, default="awq/")
parser.add_argument(
'--dtype',
type=str,
default='float16',
choices=['float32', 'float16', 'bfloat16'],
)
parser.add_argument(
'--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'],
)
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument(
'--log_level',
type=str,
default='info',
choices=['verbose', 'info', 'warning', 'error', 'internal_error'],
)
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument(
'--use_gpt_attention_plugin',
nargs='?',
const='float16',
default='float16',
choices=['float32', 'float16', 'bfloat16', False],
help=
"Activates attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default='float16',
choices=['float32', 'float16', 'bfloat16', False],
help=
"Activates GEMM plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_layernorm_plugin',
nargs='?',
const='float16',
type=str,
default='float16',
choices=['float32', 'float16', 'bfloat16', False],
help=
"Activates layernorm plugin for ChatGLM-6B / GLM-10B models. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_rmsnorm_plugin',
nargs='?',
const='float16',
type=str,
default='float16',
choices=['float32', 'float16', 'bfloat16', False],
help=
"Activates rmsnorm plugin for ChatGLM2-6B* / ChatGLM3-6B* models. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument('--gather_all_token_logits',
action='store_true',
default=False)
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument(
'--enable_context_fmha',
default=False,
action='store_true',
)
parser.add_argument(
'--enable_context_fmha_fp32_acc',
default=False,
action='store_true',
)
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
)
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument(
'--enable_debug_output',
default=False,
action='store_true',
)
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument('--builder_opt', type=int, default=None)
parser.add_argument(
'--output_dir',
type=Path,
default='trtModel',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
parser.add_argument(
'--remove_input_padding',
default=False,
action='store_true',
)
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.",
)
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision',
)
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_awq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.',
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.',
)
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.',
)
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.',
)
parser.add_argument(
'--group_size',
type=int,
default=128,
help='Group size used in GPTQ/AWQ quantization.',
)
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--random_seed',
type=int,
default=None,
help=
'Seed to use when initializing the random number generator for torch.',
)
parser.add_argument(
'--tokens_per_block',
type=int,
default=64,
help='Number of tokens per block in paged KV cache',
)
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for Attention QKV/Dense and MLP.',
)
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. fp8_kv_cache chooses fp8 quantization for KV'
)
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help='Define the max number of tokens supported by the engine',
)
parser.add_argument(
'--use_custom_all_reduce',
action='store_true',
help=
'Activates latency-optimized algorithm for all-reduce instead of NCCL.',
)
args = parser.parse_args(args)
logger.set_level(args.log_level)
plugins_args = [
'use_gpt_attention_plugin',
'use_gemm_plugin',
'use_layernorm_plugin',
'use_rmsnorm_plugin',
]
for plugin_arg in plugins_args:
if getattr(args, plugin_arg) is None:
logger.info(
f"{plugin_arg} set, without specifying a value. Using {args.dtype} automatically."
)
setattr(args, plugin_arg, args.dtype)
assert args.world_size == args.tp_size * args.pp_size # only TP is supported now
if args.model_dir is None:
args.model_dir = args.model_name
with open(Path(args.model_dir) / "config.json", "r") as f:
js = json.loads(f.read())
if args.model_name in ["chatglm_6b", "glm_10b"]:
assert args.max_input_len < js["max_sequence_length"]
if args.model_name in ["chatglm_6b"]:
args.apply_query_key_layer_scaling = False
args.apply_residual_connection_post_layernorm = False
args.ffn_hidden_size = js["inner_hidden_size"]
args.hidden_act = 'gelu'
args.hidden_size = js["hidden_size"]
args.linear_bias = True
args.max_input_len, args.max_output_len, args.max_seq_length = truncate_input_output_len(
args.max_input_len,
args.max_output_len,
js["max_sequence_length"],
)
args.multi_block_mode = False
args.multi_query_mode = False
args.norm_epsilon = js["layernorm_epsilon"]
args.num_heads = js["num_attention_heads"]
args.num_kv_heads = js["num_attention_heads"]
args.num_layers = js["num_layers"]
args.qkv_bias = True
args.rmsnorm = False
args.rotary_embedding_scaling = 1.0
args.use_cache = js["use_cache"]
args.vocab_size = js["vocab_size"]
elif args.model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
args.apply_query_key_layer_scaling = False
args.apply_residual_connection_post_layernorm = js[
"apply_residual_connection_post_layernorm"]
args.ffn_hidden_size = js["ffn_hidden_size"]
args.hidden_act = 'swiglu'
args.hidden_size = js["hidden_size"]
args.linear_bias = js["add_bias_linear"]
args.max_input_len, args.max_output_len, args.max_seq_length = truncate_input_output_len(
args.max_input_len,
args.max_output_len,
js["seq_length"],
)
args.multi_block_mode = False
args.multi_query_mode = js["multi_query_attention"]
args.norm_epsilon = js["layernorm_epsilon"]
args.num_heads = js["num_attention_heads"]
args.num_kv_heads = js["multi_query_group_num"]
args.num_layers = js["num_layers"]
args.qkv_bias = js["add_qkv_bias"]
args.rmsnorm = js["rmsnorm"]
if args.model_name in ["chatglm2_6b_32k", "chatglm3_6b_32k"]:
args.rotary_embedding_scaling = js["rope_ratio"]
else:
args.rotary_embedding_scaling = 1.0
args.use_cache = js["use_cache"]
args.vocab_size = js["padded_vocab_size"]
elif args.model_name in ["glm_10b"]:
args.apply_query_key_layer_scaling = False
args.apply_residual_connection_post_layernorm = False
args.ffn_hidden_size = 4 * js["hidden_size"]
args.hidden_act = 'gelu'
args.hidden_size = js["hidden_size"]
args.linear_bias = True
args.max_input_len, args.max_output_len, args.max_seq_length = truncate_input_output_len(
args.max_input_len,
args.max_output_len,
js["max_sequence_length"],
True,
)
args.multi_block_mode = False
args.multi_query_mode = False
args.norm_epsilon = 1.0e-5
args.num_heads = js["num_attention_heads"]
args.num_kv_heads = js["num_attention_heads"]
args.num_layers = js["num_layers"]
args.qkv_bias = True
args.rmsnorm = False
args.rotary_embedding_scaling = 1.0
args.use_cache = True
args.vocab_size = js["vocab_size"]
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
)
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
"Using remove input padding for inflight batching mode.")
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info("Using paged KV cache for inflight batching mode.")
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
args.quant_mode = QuantMode.use_weight_only(
args.weight_only_precision == 'int4')
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
elif args.fp8_kv_cache:
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
if args.enable_fp8:
args.quant_mode = args.quant_mode.set_fp8_qdq()
if args.max_num_tokens is not None:
assert args.enable_context_fmha
logger.info(' Build Arguments '.center(100, '='))
for k, v in vars(args).items():
logger.info(f' - {k.ljust(30, ".")}: {v}')
logger.info('=' * 100)
return args
def build_rank_engine(
builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name: str,
rank: int,
args: argparse.Namespace,
) -> trt.IHostMemory:
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
# Initialize Module
args.mapping = Mapping(
world_size=args.world_size,
rank=rank,
tp_size=args.tp_size,
)
assert args.num_layers % args.pp_size == 0, \
f"num_layers {args.n_layer} must be a multiple of pipeline "\
f"parallelism size {args.pp_size}"
trtllm_model = ChatGLMHeadModel(
apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
apply_residual_connection_post_layernorm=args.
apply_residual_connection_post_layernorm,
dtype=args.dtype,
enable_debug_output=args.enable_debug_output,
ffn_hidden_size=args.ffn_hidden_size,
hidden_act=args.hidden_act,
hidden_size=args.hidden_size,
linear_bias=args.linear_bias,
logits_dtype=args.logits_dtype,
mapping=args.mapping,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
max_seq_length=args.max_seq_length,
model_name=args.model_name,
norm_epsilon=args.norm_epsilon,
num_heads=args.num_heads,
num_kv_heads=args.num_kv_heads,
num_layers=args.num_layers,
qkv_bias=args.qkv_bias,
quant_mode=args.quant_mode,
rmsnorm=args.rmsnorm,
rotary_embedding_scaling=args.rotary_embedding_scaling,
tokens_per_block=args.tokens_per_block,
use_cache=args.use_cache,
vocab_size=args.vocab_size,
)
if args.use_smooth_quant or args.use_weight_only:
trtllm_model = quantize_model(trtllm_model, args.quant_mode)
elif args.enable_fp8 or args.fp8_kv_cache:
logger.info(f'Loading scaling factors from '
f'{args.quantized_fp8_model_path}')
quant_scales = get_scaling_factors(args.quantized_fp8_model_path,
num_layers=args.n_layer,
quant_mode=args.quant_mode)
trtllm_model = quantize_model(trtllm_model,
quant_mode=args.quant_mode,
quant_scales=quant_scales)
trtllm_model = load_from_hf(
trtllm_model,
args.model_dir,
mapping=args.mapping,
dtype=args.dtype,
model_name=args.model_name,
)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
if not args.enable_fp8:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
else:
logger.info(
"Gemm plugin does not support FP8. Disabled Gemm plugin.")
if args.use_rmsnorm_plugin:
network.plugin_config.set_rmsnorm_plugin(dtype=args.use_rmsnorm_plugin)
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_rmsnorm_quantization_plugin(dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.multi_block_mode:
network.plugin_config.enable_mmha_multi_block_mode()
if args.use_weight_only:
if args.per_group:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype='float16')
else:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype,
args.use_custom_all_reduce)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
with net_guard(network):
# Prepare
network.set_named_parameters(trtllm_model.named_parameters())
# Forward
inputs = trtllm_model.prepare_inputs(
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_new_tokens=args.max_output_len,
use_cache=True,
max_beam_width=args.max_beam_width,
)
trtllm_model(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in trtllm_model.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = str_dtype_to_trt(args.dtype)
if args.visualize:
model_path = args.output_dir / 'test.onnx'
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
# Network -> Engine
engine = None
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = args.output_dir / (args.model_name + '-config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
logger.set_level(args.log_level)
args.output_dir.mkdir(parents=True, exist_ok=True)
timing_cache_file = args.output_dir / "model.cache"
timing_cache = timing_cache_file
builder = Builder()
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
# NOTE: when only int8 kv cache is used together with paged kv cache no int8 tensors are exposed to TRT
int8_trt_flag = args.quant_mode.has_act_or_weight_quant() or (
not args.paged_kv_cache and args.quant_mode.has_int8_kv_cache())
builder_config = builder.create_builder_config(
precision=args.dtype,
timing_cache=timing_cache,
tensor_parallel=args.tp_size,
pipeline_parallel=args.pp_size,
int8=int8_trt_flag,
fp8=args.enable_fp8,
strongly_typed=args.strongly_typed,
opt_level=args.builder_opt,
hardware_compatibility=None,
apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
gather_all_token_logits=args.gather_all_token_logits,
hidden_act=args.hidden_act,
hidden_size=args.hidden_size,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_num_tokens=args.max_output_len + args.max_input_len,
max_output_len=args.max_output_len,
max_position_embeddings=args.max_seq_length,
multi_query_mode=args.multi_query_mode,
name=args.model_name,
num_heads=args.num_heads,
num_kv_heads=args.num_kv_heads,
num_layers=args.num_layers,
paged_kv_cache=args.paged_kv_cache,
parallel_build=args.parallel_build,
quant_mode=args.quant_mode,
remove_input_padding=args.remove_input_padding,
vocab_size=args.vocab_size,
)
engine_name = get_engine_name(
args.model_name,
args.dtype,
args.world_size,
args.pp_size,
cur_rank,
)
engine = build_rank_engine(
builder,
builder_config,
engine_name,
cur_rank,
args,
)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
local_num_kv_heads = (args.num_kv_heads + args.world_size -
1) // args.world_size
kv_dtype = str_dtype_to_trt(args.dtype)
if args.quant_mode.has_int8_kv_cache():
kv_dtype = str_dtype_to_trt('int8')
elif args.quant_mode.has_fp8_kv_cache():
kv_dtype = str_dtype_to_trt('fp8')
check_gpt_mem_usage(
engine=engine,
kv_dtype=kv_dtype,
use_gpt_attention_plugin=args.use_gpt_attention_plugin,
paged_kv_cache=args.paged_kv_cache,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
local_num_kv_heads=local_num_kv_heads,
head_size=args.hidden_size // args.num_heads,
num_layers=args.num_layers)
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
timing_cache = builder_config.trt_builder_config.get_timing_cache(
)
serialize_engine(engine, args.output_dir / engine_name)
del engine
if rank == 0:
ok = builder.save_timing_cache(builder_config, timing_cache_file)
assert ok, "Failed to save timing cache."
def run_build(args=None):
args = parse_arguments(args)
if args.random_seed is not None:
torch.manual_seed(args.random_seed)
logger.set_level(args.log_level)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')
if __name__ == '__main__':
run_build()