mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
316 lines
13 KiB
Python
316 lines
13 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import csv
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.quantization import QuantMode
|
|
from tensorrt_llm.runtime import GenerationSession, ModelConfig, SamplingConfig
|
|
from tensorrt_llm.runtime.generation import Mapping
|
|
|
|
from build import get_engine_name # isort:skip
|
|
|
|
now_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
MAX_INPUT_LEN = 2048
|
|
MAX_SEQ_LEN = 4096
|
|
|
|
|
|
class QWenForCausalLMGenerationSession(GenerationSession):
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
engine_buffer,
|
|
mapping: Mapping,
|
|
debug_mode=False,
|
|
debug_tensors_to_save=None,
|
|
cuda_graph_mode=False,
|
|
stream: torch.cuda.Stream = None,
|
|
global_max_input_length=MAX_INPUT_LEN,
|
|
global_max_output_length=MAX_SEQ_LEN,
|
|
):
|
|
super().__init__(model_config,
|
|
engine_buffer,
|
|
mapping,
|
|
debug_mode,
|
|
debug_tensors_to_save=debug_tensors_to_save,
|
|
cuda_graph_mode=cuda_graph_mode,
|
|
stream=stream)
|
|
self.global_max_input_length = global_max_input_length
|
|
self.global_max_output_length = global_max_output_length
|
|
|
|
def generate(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
input_lengths: torch.Tensor,
|
|
sampling_config: SamplingConfig,
|
|
max_new_tokens: int,
|
|
runtime_rank: int = 0,
|
|
):
|
|
max_input_length = torch.max(input_lengths).item()
|
|
max_new_tokens = min(max_new_tokens,
|
|
self.global_max_output_length - max_input_length)
|
|
# setup batch_size, max_input_length, max_output_len
|
|
self.setup(batch_size=input_lengths.size(0),
|
|
max_context_length=max_input_length,
|
|
max_new_tokens=max_new_tokens)
|
|
output_ids = self.decode(input_ids, input_lengths, sampling_config)
|
|
with torch.no_grad():
|
|
torch.cuda.synchronize()
|
|
if runtime_rank == 0:
|
|
outputs = output_ids[:, 0, :]
|
|
return outputs
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--max_new_tokens', type=int, default=200)
|
|
parser.add_argument('--log_level', type=str, default='error')
|
|
parser.add_argument(
|
|
'--engine_dir',
|
|
type=str,
|
|
default="qwen_outputs",
|
|
)
|
|
parser.add_argument('--tokenizer_dir',
|
|
type=str,
|
|
default=".",
|
|
help="Directory containing the tokenizer.model.")
|
|
default_text = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n你好,请问你叫什么?<|im_end|>\n<|im_start|>assistant\n"
|
|
parser.add_argument('--input_text', type=str, default=default_text)
|
|
parser.add_argument(
|
|
'--input_tokens',
|
|
dest='input_file',
|
|
type=str,
|
|
help=
|
|
'CSV or Numpy file containing tokenized input. Alternative to text input.',
|
|
default=None)
|
|
parser.add_argument('--output_csv',
|
|
type=str,
|
|
help='CSV file where the tokenized output is stored.',
|
|
default=None)
|
|
parser.add_argument('--output_npy',
|
|
type=str,
|
|
help='Numpy file where the tokenized output is stored.',
|
|
default=None)
|
|
parser.add_argument('--num_beams',
|
|
type=int,
|
|
help="Use beam search if num_beams >1",
|
|
default=1)
|
|
return parser.parse_args()
|
|
|
|
|
|
def get_model(tokenizer_dir, engine_dir, log_level='error'):
|
|
# --load the tokenizer and engine #
|
|
tensorrt_llm.logger.set_level(log_level)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_dir,
|
|
legacy=False,
|
|
trust_remote_code=True,
|
|
)
|
|
config_path = os.path.join(engine_dir, 'config.json')
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
gen_config_path = os.path.join(tokenizer_dir, 'generation_config.json')
|
|
with open(gen_config_path, 'r') as f:
|
|
gen_config = json.load(f)
|
|
top_k = gen_config['top_k']
|
|
top_p = gen_config['top_p']
|
|
chat_format = gen_config['chat_format']
|
|
if chat_format == "raw":
|
|
eos_token_id = gen_config['eos_token_id']
|
|
pad_token_id = gen_config['pad_token_id']
|
|
elif chat_format == "chatml":
|
|
pad_token_id = eos_token_id = tokenizer.im_end_id
|
|
else:
|
|
raise Exception("unknown chat format ", chat_format)
|
|
|
|
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
|
|
remove_input_padding = config['plugin_config']['remove_input_padding']
|
|
dtype = config['builder_config']['precision']
|
|
tp_size = config['builder_config']['tensor_parallel']
|
|
pp_size = config['builder_config']['pipeline_parallel']
|
|
world_size = tp_size * pp_size
|
|
assert world_size == tensorrt_llm.mpi_world_size(), \
|
|
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
|
|
num_heads = config['builder_config']['num_heads'] // world_size
|
|
hidden_size = config['builder_config']['hidden_size'] // world_size
|
|
vocab_size = config['builder_config']['vocab_size']
|
|
num_layers = config['builder_config']['num_layers']
|
|
num_kv_heads = config['builder_config'].get('num_kv_heads', num_heads)
|
|
paged_kv_cache = config['plugin_config']['paged_kv_cache']
|
|
tokens_per_block = config['plugin_config']['tokens_per_block']
|
|
quant_mode = QuantMode(config['builder_config']['quant_mode'])
|
|
if config['builder_config'].get('multi_query_mode', False):
|
|
tensorrt_llm.logger.warning(
|
|
"`multi_query_mode` config is deprecated. Please rebuild the engine."
|
|
)
|
|
num_kv_heads = 1
|
|
use_custom_all_reduce = config['plugin_config'].get('use_custom_all_reduce',
|
|
False)
|
|
|
|
runtime_rank = tensorrt_llm.mpi_rank()
|
|
runtime_mapping = tensorrt_llm.Mapping(world_size=world_size,
|
|
rank=runtime_rank,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size)
|
|
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
|
|
|
|
model_config = ModelConfig(num_heads=num_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
hidden_size=hidden_size,
|
|
vocab_size=vocab_size,
|
|
num_layers=num_layers,
|
|
gpt_attention_plugin=use_gpt_attention_plugin,
|
|
paged_kv_cache=paged_kv_cache,
|
|
tokens_per_block=tokens_per_block,
|
|
remove_input_padding=remove_input_padding,
|
|
dtype=dtype,
|
|
quant_mode=quant_mode,
|
|
use_custom_all_reduce=use_custom_all_reduce)
|
|
sampling_config = SamplingConfig(
|
|
end_id=eos_token_id,
|
|
pad_id=pad_token_id,
|
|
num_beams=1,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
)
|
|
|
|
engine_name = get_engine_name('qwen', dtype, tp_size, pp_size, runtime_rank)
|
|
serialize_path = os.path.join(engine_dir, engine_name)
|
|
print(f'Loading engine from {serialize_path}')
|
|
return (model_config, sampling_config, runtime_mapping, runtime_rank,
|
|
serialize_path, remove_input_padding, tokenizer, eos_token_id,
|
|
pad_token_id)
|
|
|
|
|
|
def generate(
|
|
max_new_tokens: int,
|
|
log_level: str = 'error',
|
|
engine_dir: str = 'qwen_outputs',
|
|
input_text: str = 'Born in north-east France, Soyer trained as a',
|
|
input_file: str = None,
|
|
output_csv: str = None,
|
|
output_npy: str = None,
|
|
tokenizer_dir: str = None,
|
|
num_beams: int = 1,
|
|
):
|
|
(model_config, sampling_config, runtime_mapping, runtime_rank,
|
|
serialize_path, remove_input_padding, tokenizer, eos_token_id,
|
|
pad_token_id) = get_model(tokenizer_dir, engine_dir, log_level)
|
|
with open(serialize_path, 'rb') as f:
|
|
engine_buffer = f.read()
|
|
decoder = QWenForCausalLMGenerationSession(
|
|
model_config,
|
|
engine_buffer,
|
|
runtime_mapping,
|
|
)
|
|
|
|
input_tokens = []
|
|
if input_file is None:
|
|
input_tokens.append(
|
|
tokenizer.encode(input_text, add_special_tokens=False))
|
|
else:
|
|
if input_file.endswith('.csv'):
|
|
with open(input_file, 'r') as csv_file:
|
|
csv_reader = csv.reader(csv_file, delimiter=',')
|
|
for line in csv_reader:
|
|
input_tokens.append(np.array(line, dtype='int32'))
|
|
elif input_file.endswith('.npy'):
|
|
inputs = np.load(input_file)
|
|
for row in inputs:
|
|
row = row[row != eos_token_id]
|
|
input_tokens.append(row)
|
|
else:
|
|
print('Input file format not supported.')
|
|
raise SystemExit
|
|
|
|
input_ids = None
|
|
input_lengths = None
|
|
if input_file is None:
|
|
input_ids = torch.tensor(input_tokens, device="cuda", dtype=torch.int32)
|
|
input_lengths = torch.tensor([input_ids.size(1)],
|
|
device="cuda",
|
|
dtype=torch.int32)
|
|
else:
|
|
input_lengths = torch.tensor([len(x) for x in input_tokens],
|
|
device="cuda",
|
|
dtype=torch.int32)
|
|
if remove_input_padding:
|
|
input_ids = np.concatenate(input_tokens)
|
|
input_ids = torch.tensor(input_ids,
|
|
device="cuda",
|
|
dtype=torch.int32).unsqueeze(0)
|
|
else:
|
|
input_ids = torch.nested.to_padded_tensor(
|
|
torch.nested.nested_tensor(input_tokens, dtype=torch.int32),
|
|
eos_token_id).cuda()
|
|
|
|
max_input_length = torch.max(input_lengths).item()
|
|
max_new_tokens = min(max_new_tokens, MAX_SEQ_LEN - max_input_length)
|
|
decoder.setup(batch_size=input_lengths.size(0),
|
|
max_context_length=max_input_length,
|
|
max_new_tokens=max_new_tokens)
|
|
|
|
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
|
|
torch.cuda.synchronize()
|
|
|
|
if runtime_rank == 0:
|
|
if output_csv is None and output_npy is None:
|
|
for b in range(input_lengths.size(0)):
|
|
inputs = input_tokens[b]
|
|
input_text = tokenizer.decode(inputs)
|
|
print(f'Input: \"{input_text}\"')
|
|
if num_beams <= 1:
|
|
outputs = output_ids[b][0, len(inputs):].tolist()
|
|
output_text = tokenizer.decode(outputs,
|
|
skip_special_tokens=True)
|
|
print(f'Output: \"{output_text}\"')
|
|
else:
|
|
for beam in range(num_beams):
|
|
outputs = output_ids[b][beam, len(inputs):].tolist()
|
|
output_text = tokenizer.decode(outputs,
|
|
skip_special_tokens=True)
|
|
print(f'Output(beam: {beam}): \"{output_text}\"')
|
|
|
|
output_ids = output_ids.reshape((-1, output_ids.size(2)))
|
|
|
|
if output_csv is not None:
|
|
output_file = Path(output_csv)
|
|
output_file.parent.mkdir(exist_ok=True, parents=True)
|
|
outputs = output_ids.tolist()
|
|
with open(output_file, 'w') as csv_file:
|
|
writer = csv.writer(csv_file, delimiter=',')
|
|
writer.writerows(outputs)
|
|
|
|
if output_npy is not None:
|
|
output_file = Path(output_npy)
|
|
output_file.parent.mkdir(exist_ok=True, parents=True)
|
|
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
|
|
np.save(output_file, outputs)
|
|
return
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
generate(**vars(args))
|