mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
268 lines
12 KiB
C++
268 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/layers/baseSamplingLayer.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/penaltyKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/layers/fillBuffers.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace layers
|
|
{
|
|
template <typename T>
|
|
void BaseSamplingLayer<T>::allocateBuffer(size_t batchSize)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
std::array<size_t, 10> deviceBufferSizes;
|
|
deviceBufferSizes[0] = sizeof(curandState_t) * batchSize;
|
|
deviceBufferSizes[1] = sizeof(uint64_t) * batchSize;
|
|
deviceBufferSizes[2] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[3] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[4] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[5] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[6] = sizeof(int) * batchSize;
|
|
deviceBufferSizes[7] = sizeof(T) * batchSize * mVocabSizePadded;
|
|
deviceBufferSizes[8] = sizeof(bool) * batchSize;
|
|
deviceBufferSizes[9] = sizeof(float) * batchSize;
|
|
|
|
mCurandStatesDevice = mAllocator->reMalloc(mCurandStatesDevice, deviceBufferSizes[0], false);
|
|
mRandomSeedsDevice = mAllocator->reMalloc(mRandomSeedsDevice, deviceBufferSizes[1], false);
|
|
mTemperaturesDevice = mAllocator->reMalloc(mTemperaturesDevice, deviceBufferSizes[2], false);
|
|
mRepetitionPenaltiesDevice = mAllocator->reMalloc(mRepetitionPenaltiesDevice, deviceBufferSizes[3], false);
|
|
mPresencePenaltiesDevice = mAllocator->reMalloc(mPresencePenaltiesDevice, deviceBufferSizes[4], false);
|
|
mFrequencyPenaltiesDevice = mAllocator->reMalloc(mFrequencyPenaltiesDevice, deviceBufferSizes[5], false);
|
|
mMinLengthsDevice = mAllocator->reMalloc(mMinLengthsDevice, deviceBufferSizes[6], false);
|
|
mRuntimeLogitsDevice = mAllocator->reMalloc(mRuntimeLogitsDevice, deviceBufferSizes[7], false);
|
|
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[8], false);
|
|
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[9], false);
|
|
|
|
auto const bytesAllocated = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
|
|
TLLM_LOG_DEBUG("baseSamplingLayer allocated %d bytes on GPU", bytesAllocated);
|
|
|
|
// host buffers.
|
|
mSkipDecodeHost = (bool*) std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize);
|
|
TLLM_CHECK(mSkipDecodeHost != nullptr);
|
|
|
|
mIsAllocateBuffer = true;
|
|
}
|
|
|
|
template <typename T>
|
|
void BaseSamplingLayer<T>::freeBuffer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
if (mIsAllocateBuffer)
|
|
{
|
|
mAllocator->free((void**) (&mCurandStatesDevice));
|
|
mAllocator->free((void**) (&mRandomSeedsDevice));
|
|
mAllocator->free((void**) (&mTemperaturesDevice));
|
|
mAllocator->free((void**) (&mRepetitionPenaltiesDevice));
|
|
mAllocator->free((void**) (&mPresencePenaltiesDevice));
|
|
mAllocator->free((void**) (&mFrequencyPenaltiesDevice));
|
|
mAllocator->free((void**) (&mMinLengthsDevice));
|
|
mAllocator->free((void**) (&mRuntimeLogitsDevice));
|
|
mAllocator->free((void**) (&mSkipDecodeDevice));
|
|
mAllocator->free((void**) (&mSetupWorkspaceDevice));
|
|
std::free(mSkipDecodeHost);
|
|
mIsAllocateBuffer = false;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
BaseSamplingLayer<T>::BaseSamplingLayer(size_t maxBatchSize, size_t vocabSize, size_t vocabSizePadded,
|
|
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop)
|
|
: BaseLayer(stream, std::move(allocator), prop)
|
|
, mMaxBatchSize(maxBatchSize)
|
|
, mVocabSize(vocabSize)
|
|
, mVocabSizePadded(vocabSizePadded)
|
|
{
|
|
allocateBuffer(maxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
BaseSamplingLayer<T>::BaseSamplingLayer(BaseSamplingLayer const& samplingLayer)
|
|
: BaseLayer(samplingLayer)
|
|
, mMaxBatchSize(samplingLayer.mMaxBatchSize)
|
|
, mVocabSize(samplingLayer.mVocabSize)
|
|
, mVocabSizePadded(samplingLayer.mVocabSizePadded)
|
|
, mSamplingWorkspaceSize(samplingLayer.mSamplingWorkspaceSize)
|
|
{
|
|
allocateBuffer(mMaxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
void BaseSamplingLayer<T>::setupBase(const size_t batchSize, int const* batchSlots, SetupParams const& setupParams)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
|
|
// If runtime argument has single random seed, using this random seed to
|
|
// initialize the random table of all sentences. If the argument has
|
|
// [batchSize] random seeds, initializing the random table by different
|
|
// random seeds respectively. If no random seed, initialize the random table
|
|
// of all sentences by 0 directly.
|
|
if (setupParams.randomSeed)
|
|
{
|
|
if (setupParams.randomSeed->size() == 1)
|
|
{
|
|
invokeCurandInitialize(
|
|
mCurandStatesDevice, batchSlots, batchSize, setupParams.randomSeed->front(), mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK_WITH_INFO(setupParams.randomSeed->size() == batchSize, "Random seed vector size mismatch.");
|
|
cudaAutoCpy(mRandomSeedsDevice, setupParams.randomSeed->data(), batchSize, mStream);
|
|
invokeCurandBatchInitialize(mCurandStatesDevice, batchSlots, batchSize, mRandomSeedsDevice, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Initialize curand states using the default seed 0.
|
|
invokeCurandInitialize(mCurandStatesDevice, batchSlots, batchSize, 0, mStream);
|
|
}
|
|
|
|
// Setup penalties.
|
|
FillBuffers const fillBuffers{batchSize, mStream};
|
|
|
|
mUseTemperature = static_cast<bool>(setupParams.temperature);
|
|
mUseRepetitionPenalty = static_cast<bool>(setupParams.repetition_penalty);
|
|
mUsePresencePenalty = static_cast<bool>(setupParams.presence_penalty);
|
|
mUseFrequencyPenalty = static_cast<bool>(setupParams.frequency_penalty);
|
|
mUseMinLengths = static_cast<bool>(setupParams.min_length);
|
|
if (mUseTemperature)
|
|
{
|
|
fillBuffers(setupParams.temperature, getDefaultPenaltyValue(RepetitionPenaltyType::Temperature), mTemperature,
|
|
mTemperaturesDevice, mSetupWorkspaceDevice, batchSlots);
|
|
}
|
|
if (mUseRepetitionPenalty)
|
|
{
|
|
fillBuffers(setupParams.repetition_penalty, getDefaultPenaltyValue(RepetitionPenaltyType::Repetition),
|
|
mRepetitionPenalty, mRepetitionPenaltiesDevice, mSetupWorkspaceDevice, batchSlots);
|
|
}
|
|
if (mUsePresencePenalty)
|
|
{
|
|
fillBuffers(setupParams.presence_penalty, getDefaultPenaltyValue(RepetitionPenaltyType::Presence),
|
|
mPresencePenalty, mPresencePenaltiesDevice, mSetupWorkspaceDevice, batchSlots);
|
|
}
|
|
if (mUseFrequencyPenalty)
|
|
{
|
|
fillBuffers(setupParams.frequency_penalty, getDefaultPenaltyValue(RepetitionPenaltyType::Frequency),
|
|
mFrequencyPenalty, mFrequencyPenaltiesDevice, mSetupWorkspaceDevice, batchSlots);
|
|
}
|
|
if (mUseMinLengths)
|
|
{
|
|
fillBuffers(setupParams.min_length, (int) getDefaultPenaltyValue(RepetitionPenaltyType::MinLength), mMinLengths,
|
|
mMinLengthsDevice, mSetupWorkspaceDevice, batchSlots);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BaseSamplingLayer<T>::forward(DecodingOutputParams& outputs, ForwardParams const& inputs, int* penaltyWorkspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto const batchSize = inputs.logits.shape[0];
|
|
auto const step = inputs.step;
|
|
auto* const inputLengths = inputs.input_lengths ? inputs.input_lengths->template getPtr<const int>() : nullptr;
|
|
|
|
auto* logits = inputs.logits.template getPtr<T>();
|
|
TLLM_CHECK_WITH_INFO((inputs.batch_slots_host.has_value() ^ inputs.batch_slots.has_value()) == 0,
|
|
"either both batch_slots_host and batch_slots have to be provided or neither of them");
|
|
auto* batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<const int>() : nullptr;
|
|
std::vector<int32_t> batchSlotsVec(batchSize);
|
|
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
|
|
auto* batchSlotsHost
|
|
= inputs.batch_slots_host ? inputs.batch_slots_host->template getPtr<const int>() : batchSlotsVec.data();
|
|
|
|
#define ALL_OF(addrs_, p_, sz_, v_) (std::all_of(addrs_, addrs_ + sz_, [&](int32_t b) { return p_[b] == v_; }))
|
|
|
|
if (ALL_OF(batchSlotsHost, mSkipDecodeHost, batchSize, true))
|
|
{
|
|
// No sample in the current batch to do TopX sampling.
|
|
return;
|
|
}
|
|
mSkipAny = std::any_of(batchSlotsHost, batchSlotsHost + batchSize,
|
|
[this](int32_t batchSlot) { return this->mSkipDecodeHost[batchSlot]; });
|
|
if (mSkipAny)
|
|
{
|
|
// A TopX Sampling layer directly changes the logit values. In case of
|
|
// skip_any==true, meaning topk and topp layers will run simultaneously for
|
|
// a batch in the same step. We copy the logits to an internal buffer, not
|
|
// affecting the other sampling layers.
|
|
TLLM_CHECK(inputs.logits.size() == batchSize * mVocabSizePadded);
|
|
cudaD2Dcpy(mRuntimeLogitsDevice, logits, inputs.logits.size(), mStream);
|
|
logits = mRuntimeLogitsDevice;
|
|
}
|
|
|
|
auto* embeddingBias = inputs.embedding_bias ? inputs.embedding_bias->template getPtr<T const>() : nullptr;
|
|
auto* temperatures = (mUseTemperature
|
|
&& !ALL_OF(batchSlotsHost, mTemperature, batchSize,
|
|
getDefaultPenaltyValue(RepetitionPenaltyType::Temperature)))
|
|
? mTemperaturesDevice
|
|
: nullptr;
|
|
auto* repetitionPenalties = (mUseRepetitionPenalty
|
|
&& !ALL_OF(batchSlotsHost, mRepetitionPenalty, batchSize,
|
|
getDefaultPenaltyValue(RepetitionPenaltyType::Repetition)))
|
|
? mRepetitionPenaltiesDevice
|
|
: nullptr;
|
|
auto* presencePenalties = (mUsePresencePenalty
|
|
&& !ALL_OF(batchSlotsHost, mPresencePenalty, batchSize,
|
|
getDefaultPenaltyValue(RepetitionPenaltyType::Presence)))
|
|
? mPresencePenaltiesDevice
|
|
: nullptr;
|
|
auto* frequencyPenalties = (mUseFrequencyPenalty
|
|
&& !ALL_OF(batchSlotsHost, mFrequencyPenalty, batchSize,
|
|
getDefaultPenaltyValue(RepetitionPenaltyType::Frequency)))
|
|
? mFrequencyPenaltiesDevice
|
|
: nullptr;
|
|
auto* minLengths = (mUseMinLengths
|
|
&& !ALL_OF(batchSlotsHost, mMinLengths, batchSize,
|
|
(int) getDefaultPenaltyValue(RepetitionPenaltyType::MinLength)))
|
|
? mMinLengthsDevice
|
|
: nullptr;
|
|
|
|
InvokeBatchApplyPenaltyParams<T> penaltyParams{logits, embeddingBias, penaltyWorkspace, nullptr, temperatures,
|
|
repetitionPenalties, presencePenalties, frequencyPenalties,
|
|
(mUseRepetitionPenalty || mUsePresencePenalty || mUseFrequencyPenalty), batchSize, 1, inputs.max_seq_len,
|
|
mVocabSize, mVocabSizePadded, outputs.output_ids_ptr.template getPtr<const int*>(), nullptr, inputLengths,
|
|
outputs.sequence_length->getPtr<const int>(), minLengths, inputs.end_ids.template getPtr<const int>(),
|
|
batchSlots, mStream};
|
|
invokeBatchApplyPenalty(penaltyParams);
|
|
sync_check_cuda_error();
|
|
#undef ALL_OF
|
|
|
|
runSampling(outputs, inputs);
|
|
|
|
sync_check_cuda_error();
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template class BaseSamplingLayer<float>;
|
|
template class BaseSamplingLayer<half>;
|
|
|
|
} // namespace layers
|
|
} // namespace tensorrt_llm
|