mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
250 lines
10 KiB
Plaintext
250 lines
10 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
|
|
#include "tensorrt_llm/layers/topKSamplingLayer.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
|
|
#include <algorithm>
|
|
#include <float.h>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace layers
|
|
{
|
|
|
|
template <uint32_t TOP_K_MAX>
|
|
__global__ void setupTopKRuntimeArgs(int batchSize, uint32_t topK, uint32_t* topKs, int topKsSize, float topP,
|
|
float* topPs, int topPsSize, bool* skipDecode, const int* batchSlots)
|
|
{
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (int bi = index; bi < batchSize; bi += gridDim.x * blockDim.x)
|
|
{
|
|
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
|
|
uint32_t k = topKsSize > 1 ? topKs[batchSlot] : topK;
|
|
float p = topPsSize > 1 ? topPs[batchSlot] : topP;
|
|
if (k == 0 && p == 0.0f)
|
|
{
|
|
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
|
|
// equivalent to greedy search. So, we set the topk = 1 as an alternative
|
|
// solution.
|
|
k = 1;
|
|
}
|
|
if (k > 0 && p == 0.0f)
|
|
{
|
|
// This case corresponds to the old topk sampling, which is equivalent to
|
|
// the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and
|
|
// TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we
|
|
// replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the
|
|
// compatibility.
|
|
p = 1.0f;
|
|
}
|
|
// Clip k value. A topk sampling kernel supports up to TOP_K_MAX.
|
|
topKs[batchSlot] = k;
|
|
// Clip p value if it is out of range. range = [0.0, 1.0].
|
|
topPs[batchSlot] = p;
|
|
skipDecode[batchSlot] = k == 0;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::allocateBuffer(size_t const batchSize)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
invokeTopKSampling<T>(nullptr, mSamplingWorkspaceSize, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
|
|
nullptr, nullptr, TOP_K_MAX, 1.0f, mVocabSizePadded, nullptr, nullptr, mStream, batchSize, mSkipDecodeDevice,
|
|
mNormalizeLogProbs);
|
|
|
|
std::array<size_t, 4> deviceBufferSizes;
|
|
deviceBufferSizes[0] = mSamplingWorkspaceSize;
|
|
deviceBufferSizes[1] = sizeof(uint32_t) * batchSize;
|
|
deviceBufferSizes[2] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[3] = std::max(deviceBufferSizes[1], deviceBufferSizes[2]);
|
|
|
|
mSamplingWorkspaceDevice = mAllocator->reMalloc(mSamplingWorkspaceDevice, deviceBufferSizes[0], false);
|
|
mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[1], false);
|
|
mRuntimeTopPDevice = mAllocator->reMalloc(mRuntimeTopPDevice, deviceBufferSizes[2], false);
|
|
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[3], false);
|
|
|
|
auto const bytesAllocated = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
|
|
TLLM_LOG_DEBUG("topKSamplingLayer allocated %d bytes on GPU", bytesAllocated);
|
|
|
|
mIsAllocateBuffer = true;
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::freeBuffer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
if (mIsAllocateBuffer)
|
|
{
|
|
mAllocator->free((void**) (&mSamplingWorkspaceDevice));
|
|
mAllocator->free((void**) (&mRuntimeTopKDevice));
|
|
mAllocator->free((void**) (&mRuntimeTopPDevice));
|
|
mAllocator->free((void**) (&mSetupWorkspaceDevice));
|
|
}
|
|
BaseSamplingLayer<T>::freeBuffer();
|
|
mIsAllocateBuffer = false;
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::setup(size_t const batchSize, int const* batchSlots, SetupParams const& setupParams)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
BaseSamplingLayer<T>::setupBase(batchSize, batchSlots, setupParams);
|
|
|
|
uint32_t constexpr defaultTopK = 0;
|
|
auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector<uint32_t>{defaultTopK});
|
|
auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector<float>{});
|
|
|
|
size_t const runtimeTopKSize = runtimeTopK.size();
|
|
size_t const runtimeTopPSize = runtimeTopP.size();
|
|
mNormalizeLogProbs = setupParams.normalize_log_probs.has_value() && setupParams.normalize_log_probs.value();
|
|
|
|
for (auto& topP : runtimeTopP)
|
|
{
|
|
if (topP < 0.f || topP > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
|
|
topP = std::clamp(topP, 0.f, 1.f);
|
|
}
|
|
}
|
|
for (auto& topK : runtimeTopK)
|
|
{
|
|
if (topK > TOP_K_MAX)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX);
|
|
topK = TOP_K_MAX;
|
|
}
|
|
}
|
|
|
|
uint32_t const topK = *std::max_element(std::begin(runtimeTopK), std::end(runtimeTopK));
|
|
float const topP = (runtimeTopPSize == 0) ? 0.0f : runtimeTopP.front();
|
|
|
|
if (runtimeTopKSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
|
|
fmtstr("runtimeTopK.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopK.size(), batchSize));
|
|
cudaAutoCpy(reinterpret_cast<uint32_t*>(mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(
|
|
reinterpret_cast<uint32_t*>(mSetupWorkspaceDevice), mRuntimeTopKDevice, batchSlots, batchSize, mStream);
|
|
}
|
|
if (runtimeTopPSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
|
|
fmtstr("runtimeTopP.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopP.size(), batchSize));
|
|
cudaAutoCpy(reinterpret_cast<float*>(mSetupWorkspaceDevice), runtimeTopP.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(
|
|
reinterpret_cast<float*>(mSetupWorkspaceDevice), mRuntimeTopPDevice, batchSlots, batchSize, mStream);
|
|
}
|
|
|
|
dim3 block(std::min((int) batchSize, 256));
|
|
dim3 grid(divUp((int) batchSize, (int) block.x));
|
|
// support topK up to TOP_K_MAX.
|
|
setupTopKRuntimeArgs<TOP_K_MAX><<<grid, block, 0, mStream>>>(batchSize, topK, mRuntimeTopKDevice, runtimeTopKSize,
|
|
topP, mRuntimeTopPDevice, runtimeTopPSize, mSkipDecodeDevice, batchSlots);
|
|
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream);
|
|
std::vector<uint32_t> runtimeTopKs(mMaxBatchSize);
|
|
cudaAutoCpy(runtimeTopKs.data(), mRuntimeTopKDevice, mMaxBatchSize, mStream);
|
|
// TODO(nkorobov): find maxTopK using batch slot
|
|
mRuntimeMaxTopK = *std::max_element(std::begin(runtimeTopKs), std::end(runtimeTopKs));
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::runSampling(DecodingOutputParams& outputs, DecodingParams const& inputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto const batchSize = inputs.logits.shape[0];
|
|
|
|
// in case of skip any, the logit value is already copied and processed.
|
|
auto* logits = mSkipAny ? mRuntimeLogitsDevice : inputs.logits.template getPtr<T>();
|
|
auto* endIds = inputs.end_ids.template getPtr<const int>();
|
|
auto* batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<const int>() : nullptr;
|
|
|
|
FinishedState* finishedInput = (inputs.finished)
|
|
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
FinishedState* finishedOutput = (outputs.finished)
|
|
? reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
invokeAddBiasEndMask(
|
|
logits, (T*) (nullptr), endIds, finishedInput, batchSlots, batchSize, mVocabSize, mVocabSizePadded, mStream);
|
|
sync_check_cuda_error();
|
|
|
|
float* cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : nullptr;
|
|
float* outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>() : nullptr;
|
|
|
|
if (cumLogProbs != nullptr || outputLogProbs != nullptr)
|
|
{
|
|
invokeAddBiasSoftMax(logits, logits, (T*) (nullptr), endIds, finishedInput, batchSlots, batchSize, mVocabSize,
|
|
mVocabSizePadded, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
int* sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<int>() : nullptr;
|
|
|
|
invokeBatchTopKSampling(mSamplingWorkspaceDevice, mSamplingWorkspaceSize, logits,
|
|
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
|
|
outputLogProbs, mCurandStatesDevice,
|
|
(int) mRuntimeMaxTopK, // useless because mRuntimeTopKDevice is never
|
|
// nullptr. Keep for legacy.
|
|
(int*) (mRuntimeTopKDevice),
|
|
1.0f, // useless because mRuntimeTopPDevice is never nullptr. Keep for
|
|
// legacy.
|
|
mRuntimeTopPDevice, mVocabSizePadded, endIds, batchSlots, mStream, batchSize, mSkipDecodeDevice,
|
|
mNormalizeLogProbs);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
template <typename T>
|
|
TopKSamplingLayer<T>::TopKSamplingLayer(size_t maxBatchSize, size_t vocabSize, size_t vocabSizePadded,
|
|
cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
|
|
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), nullptr)
|
|
{
|
|
allocateBuffer(mMaxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
TopKSamplingLayer<T>::TopKSamplingLayer(TopKSamplingLayer<T> const& topKSamplingLayer)
|
|
: BaseSamplingLayer<T>(topKSamplingLayer)
|
|
{
|
|
allocateBuffer(mMaxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
TopKSamplingLayer<T>::~TopKSamplingLayer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
freeBuffer();
|
|
}
|
|
|
|
template class TopKSamplingLayer<float>;
|
|
template class TopKSamplingLayer<half>;
|
|
|
|
} // namespace layers
|
|
} // namespace tensorrt_llm
|