TensorRT-LLMs/cpp/tensorrt_llm/layers/topPSamplingLayer.h
Kaiyu Xie 5955b8afba
Update TensorRT-LLM Release branch (#1192)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-29 17:20:55 +08:00

90 lines
2.8 KiB
C++

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/layers/baseSamplingLayer.h"
namespace tc = tensorrt_llm::common;
namespace tensorrt_llm
{
namespace layers
{
//! \brief Layer to randomly sample tokens from TopP logits.
template <typename T>
class TopPSamplingLayer : public BaseSamplingLayer<T>
{
public:
using Base = BaseSamplingLayer<T>;
using SetupParams = typename Base::SetupParams;
TopPSamplingLayer(std::size_t maxBatchSize, std::size_t vocabSize, std::size_t vocabSizePadded, cudaStream_t stream,
std::shared_ptr<tensorrt_llm::common::IAllocator> allocator, cudaDeviceProp* prop, bool isDeterministic = true);
TopPSamplingLayer(TopPSamplingLayer<T> const& top_p_sampling_layer);
~TopPSamplingLayer();
void setup(std::size_t batchSize, int const* batch_slots, SetupParams const& setupParams) override;
protected:
void runSampling(DecodingOutputParams& outputs, DecodingParams const& inputs) override;
void freeBuffer() override;
protected:
uint32_t* runtime_top_k_buf_ = nullptr;
float* runtime_top_p_buf_ = nullptr;
float mRuntimeMaxTopP;
float* initial_top_p_buf_ = nullptr;
float* top_p_decay_buf_ = nullptr;
float* top_p_min_buf_ = nullptr;
int32_t* top_p_reset_ids_buf_ = nullptr;
void* setup_workspace_buf_ = nullptr;
int32_t* topp_id_vals_buf_ = nullptr;
int32_t* topp_offset_buf_ = nullptr;
int32_t* begin_topp_offset_buf_ = nullptr;
std::size_t cub_temp_storage_size_;
bool is_deterministic_ = true;
int air_topp_block_num_;
using Base::mMaxBatchSize;
using Base::mVocabSize;
using Base::mVocabSizePadded;
using Base::mSamplingWorkspaceSize;
using Base::mSamplingWorkspaceDevice;
using Base::mCurandStatesDevice;
using Base::mSkipDecodeDevice;
using Base::mSkipDecodeHost;
using Base::mSkipAny;
using Base::mRuntimeLogitsDevice;
using Base::mStream;
using Base::mAllocator;
using Base::mIsAllocateBuffer;
using Base::mCudaDeviceProp;
private:
void allocateBuffer(std::size_t batchSize);
};
} // namespace layers
} // namespace tensorrt_llm