TensorRT-LLMs/tests/model_api/test_model_api_multi_gpu.py
Kaiyu Xie 5955b8afba
Update TensorRT-LLM Release branch (#1192)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-29 17:20:55 +08:00

71 lines
2.3 KiB
Python

import os
import sys
import torch
from mpi4py.futures import MPIPoolExecutor
import tensorrt_llm
from tensorrt_llm import Mapping
from tensorrt_llm._utils import mpi_barrier
from tensorrt_llm.models import LLaMAForCausalLM
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.llm_data import llm_models_root
tensorrt_llm.logger.set_level('verbose')
# 76s on ipp1-1197, loading weights 18s (varies based on network speed), network/engine creation 27s
def build_and_run_tp2(rank):
'''Do not save the engine, all in one LLaMAForCausalLM object
'''
input_text = [
'Born in north-east France, Soyer trained as a',
"What is large language model?"
]
expected_output = [
"chef in Paris and London before moving to New York",
"\nLarge language model is a model that is"
]
tensorrt_llm.logger.set_level('verbose')
TP_SIZE = 2
torch.cuda.set_device(rank)
max_batch_size, max_isl, max_osl = 8, 256, 256
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
tokenizer_dir = hf_model_dir
mapping = Mapping(world_size=TP_SIZE, rank=rank, tp_size=TP_SIZE)
# build and run by one llama object
llama = LLaMAForCausalLM.from_hugging_face(hf_model_dir,
'float16',
mapping=mapping)
llama.to_trt(max_batch_size, max_isl, max_osl)
mpi_barrier()
tensorrt_llm.logger.warning(f"Build finished for rank {rank}")
for idx, (inp, output) in enumerate(
llama._generate(input_text, 10, tokenizer_dir=tokenizer_dir)):
# print(f"Input: {inp}")
tensorrt_llm.logger.info(f"{rank} input: {inp}")
# print(f'Output: {output}')
tensorrt_llm.logger.info(f"{rank} output: {output}")
assert output == expected_output[
idx], f"Expecting {expected_output[idx]}, got {output}"
mpi_barrier()
return True
def test_multi_gpu():
if torch.cuda.device_count() < 2:
print("The test needs at least 2 GPUs, skipping")
return
with MPIPoolExecutor(max_workers=2) as executor:
results = executor.map(build_and_run_tp2, (0, 1))
for r in results:
assert r == True
if __name__ == "__main__":
test_multi_gpu()