TensorRT-LLMs/examples/blip2/run.py
Kaiyu Xie 8dd9c91470
Update TensorRT-LLM (#539)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-04 18:06:59 +08:00

332 lines
13 KiB
Python

import argparse
import json
import os
from pathlib import Path
# isort: off
import torch
import tensorrt as trt
# isort: on
from transformers import AutoTokenizer
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm.runtime import Session, TensorInfo
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
def TRTOPT(args, config):
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
use_gpt_attention_plugin = bool(
config['plugin_config']['gpt_attention_plugin'])
world_size = config['builder_config']['tensor_parallel']
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
remove_input_padding = config['plugin_config']['remove_input_padding']
max_prompt_embedding_table_size = config['builder_config'].get(
'max_prompt_embedding_table_size', 0)
model_config = tensorrt_llm.runtime.ModelConfig(
vocab_size=vocab_size,
num_layers=num_layers,
num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=remove_input_padding,
max_prompt_embedding_table_size=max_prompt_embedding_table_size,
dtype=dtype)
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('opt', dtype, world_size, runtime_rank)
serialize_path = os.path.join(args.opt_engine_dir, engine_name)
tensorrt_llm.logger.set_level(args.log_level)
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping)
dtype = config['builder_config']['precision']
max_input_len = config['builder_config']['max_input_len']
return decoder, model_config, world_size, dtype, max_input_len
def ptuning_setup(prompt_table, dtype, hidden_size, tasks, input_ids,
input_lengths, remove_input_padding):
if prompt_table is not None:
task_vocab_size = torch.tensor([prompt_table.shape[1]],
dtype=torch.int32,
device="cuda")
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
num_sequences = input_lengths.size(
0) if remove_input_padding else input_ids.size(0)
if tasks is not None:
tasks = torch.tensor([int(t) for t in tasks.split(',')],
dtype=torch.int32,
device="cuda")
assert tasks.shape[
0] == num_sequences, "Number of supplied tasks must match input batch size"
else:
tasks = torch.zeros([num_sequences], dtype=torch.int32).cuda()
return [prompt_table, tasks, task_vocab_size]
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, default=30)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--engine_dir', type=str, default='./plan')
parser.add_argument('--input_dir', type=str, default='image.pt')
parser.add_argument('--query_tokens', type=str, default='query_tokens.pt')
parser.add_argument('--opt_engine_dir',
type=str,
default='trt_engine/blip-2-opt-2.7b/fp16/1-gpu/')
parser.add_argument('--hf_model_location',
type=str,
default="facebook/opt-2.7b")
parser.add_argument('--input_text',
type=str,
default='Question: which city is this? Answer:')
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--max_txt_len',
type=int,
help="Max text prompt length",
default=32)
parser.add_argument('--top_k', type=int, default=1)
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
stream = torch.cuda.current_stream().cuda_stream
### 0. ViT & Qformer session load ###
vit_path = os.path.join(args.engine_dir,
'visual_encoder/visual_encoder_fp16.plan')
logger.info(f'Loading engine from {vit_path}')
with open(vit_path, 'rb') as f:
engine_buffer = f.read()
logger.info(f'Creating session from engine {vit_path}')
session_vit = Session.from_serialized_engine(engine_buffer)
qformer_path = os.path.join(args.engine_dir, 'Qformer/Qformer_fp16.plan')
logger.info(f'Loading engine from {qformer_path}')
with open(qformer_path, 'rb') as f:
engine_buffer_qformer = f.read()
logger.info(f'Creating session from engine {qformer_path}')
session_qformer = Session.from_serialized_engine(engine_buffer_qformer)
### 1. ViT inference session ###
image = torch.load(args.input_dir)
batch_size = 1
image = image.expand(batch_size, -1, -1, -1).contiguous()
# assert image.iscontigous()
visual_inputs = {'input': image.float()}
visual_output_info = session_vit.infer_shapes(
[TensorInfo('input', trt.DataType.FLOAT, image.shape)])
visual_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in visual_output_info
}
ok = session_vit.run(visual_inputs, visual_outputs, stream)
assert ok, "Runtime execution failed for vit session"
image_embeds = visual_outputs['output']
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
### 2. Qformer inference session ###
query_tokens = torch.load(args.query_tokens)
query_tokens = query_tokens.expand(image_embeds.shape[0], -1,
-1).contiguous()
# assert query_tokens.is_contiguous()
qformer_inputs = {
'query_tokens': query_tokens.float(),
'image_embeds': image_embeds.float(),
'image_atts': image_atts
}
qformer_output_info = session_qformer.infer_shapes([
TensorInfo('query_tokens', trt.DataType.FLOAT, query_tokens.shape),
TensorInfo('image_embeds', trt.DataType.FLOAT, image_embeds.shape),
TensorInfo('image_atts', trt.DataType.INT64, image_atts.shape)
])
qformer_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in qformer_output_info
}
ok = session_qformer.run(qformer_inputs, qformer_outputs, stream)
assert ok, "Runtime execution failed for Qformer session"
inputs_opt = qformer_outputs["query_output"]
atts_opt = torch.ones(inputs_opt.size()[:-1],
dtype=torch.long).to(image.device)
### 3. OPT inference session
prompt = args.input_text
prompt = [prompt] * image.size(0)
opt_tokenizer = AutoTokenizer.from_pretrained(args.hf_model_location,
use_fast=False)
opt_tokenizer.padding_side = "right"
end_id = opt_tokenizer("\n", add_special_tokens=False).input_ids[0]
# end_id = opt_tokenizer.encode(opt_tokenizer.eos_token, add_special_tokens=False)[0]
engine_dir = Path(args.opt_engine_dir)
config_path = engine_dir / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
tensorrt_llm_opt, model_config, world_size, dtype, max_input_len = TRTOPT(
args, config)
vocab_size = model_config.vocab_size
def opt_blip2(prompt, inputs_opt, atts_opt):
profiler.start("OPT")
opt_tokens = opt_tokenizer(
prompt,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=args.max_txt_len,
).to(image.device)
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
input_lengths = torch.sum(attention_mask, dim=1).to(torch.int32).cuda()
sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=end_id,
pad_id=end_id,
top_k=args.top_k,
num_beams=args.num_beams)
# Assemble fake prompts which points to image embedding actually
fake_prompt_id = torch.arange(vocab_size,
vocab_size +
inputs_opt.shape[0] * inputs_opt.shape[1],
device='cuda')
fake_prompt_id = fake_prompt_id.reshape(inputs_opt.shape[0],
inputs_opt.shape[1])
input_ids = torch.cat([fake_prompt_id, opt_tokens.input_ids],
dim=1).contiguous()
input_ids = input_ids.to(torch.int32).cuda()
ptuning_args = ptuning_setup(inputs_opt, dtype,
model_config.hidden_size, None, input_ids,
input_lengths,
model_config.remove_input_padding)
with torch.no_grad():
max_input_length = torch.max(input_lengths).item()
tensorrt_llm_opt.setup(batch_size,
max_context_length=max_input_length,
max_new_tokens=args.max_output_len)
if tensorrt_llm_opt.remove_input_padding:
output_ids = tensorrt_llm_opt.decode_batch(
input_ids, sampling_config, *ptuning_args)
else:
output_ids = tensorrt_llm_opt.decode(input_ids, input_lengths,
sampling_config,
*ptuning_args)
torch.cuda.synchronize()
profiler.stop("OPT")
# Extract a list of tensors of shape beam_width x output_ids.
output_beams_list = [
opt_tokenizer.batch_decode(output_ids[batch_idx, :,
input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(batch_size)
]
stripped_text = [[
output_beams_list[batch_idx][beam_idx].strip()
for beam_idx in range(args.num_beams)
] for batch_idx in range(batch_size)]
return stripped_text
for _ in range(100):
stripped_text = opt_blip2(prompt, inputs_opt, atts_opt)
logger.info("---------------------------------------------------------")
logger.info("TensorRT-LLM BLIP-2 : ")
logger.info(f"\n[Q] {args.input_text}")
logger.info(f"\n[A] {stripped_text}")
logger.info(
f'TensorRT-LLM OPT latency: {profiler.elapsed_time_in_sec("OPT") / 100} sec'
)
logger.info("---------------------------------------------------------")
for i in range(100):
profiler.start("visual encoder")
ok = session_vit.run(visual_inputs, visual_outputs, stream)
profiler.stop("visual encoder")
profiler.start("Qformer")
ok = session_qformer.run(qformer_inputs, qformer_outputs, stream)
profiler.stop("Qformer")
logger.info(
f'TensorRT-LLM ViT latency: {profiler.elapsed_time_in_sec("visual encoder") / 100} sec'
)
logger.info(
f'TensorRT-LLM Qformer latency: {profiler.elapsed_time_in_sec("Qformer") / 100} sec'
)