mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
135 lines
4.6 KiB
Python
135 lines
4.6 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Adapted from examples/quantization/hf_ptq.py
|
|
"""
|
|
|
|
import argparse
|
|
import random
|
|
|
|
import numpy as np
|
|
import torch
|
|
from datasets import load_dataset
|
|
from torch.utils.data import DataLoader
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from tensorrt_llm._utils import str_dtype_to_torch
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.models.quantized.ammo import quantize_and_export
|
|
|
|
|
|
def get_calib_dataloader(data="cnn_dailymail",
|
|
tokenizer=None,
|
|
batch_size=1,
|
|
calib_size=512,
|
|
block_size=512):
|
|
print("Loading calibration dataset")
|
|
if data == "pileval":
|
|
dataset = load_dataset(
|
|
"json",
|
|
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
|
|
split="train")
|
|
dataset = dataset["text"][:calib_size]
|
|
elif data == "cnn_dailymail":
|
|
dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
|
|
dataset = dataset["article"][:calib_size]
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
dataset_input_ids = tokenizer(dataset,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=block_size).input_ids.cuda()
|
|
|
|
calib_dataloader = DataLoader(dataset_input_ids,
|
|
batch_size=batch_size,
|
|
shuffle=False)
|
|
|
|
return calib_dataloader
|
|
|
|
|
|
def get_tokenizer(ckpt_path, **kwargs):
|
|
logger.info(f"Loading tokenizer from {ckpt_path}")
|
|
tokenizer = AutoTokenizer.from_pretrained(ckpt_path,
|
|
padding_side="left",
|
|
**kwargs)
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
return tokenizer
|
|
|
|
|
|
def get_model(ckpt_path, dtype="float16"):
|
|
logger.info(f"Loading model from {ckpt_path}")
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
ckpt_path,
|
|
device_map="auto",
|
|
trust_remote_code=True,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
model.eval()
|
|
model = model.to(memory_format=torch.channels_last)
|
|
return model
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument("--model_dir",
|
|
type=str,
|
|
required=True,
|
|
help="Directory of a HF model checkpoint")
|
|
parser.add_argument("--dtype", help="Model data type.", default="float16")
|
|
parser.add_argument(
|
|
"--qformat",
|
|
type=str,
|
|
choices=['fp8', 'int4_awq'],
|
|
default='fp8',
|
|
help='Quantization format. Currently only fp8 is supported. '
|
|
'For int8 smoothquant, use smoothquant.py instead. ')
|
|
parser.add_argument("--calib_size",
|
|
type=int,
|
|
default=512,
|
|
help="Number of samples for calibration.")
|
|
parser.add_argument("--export_path", default="exported_model")
|
|
parser.add_argument('--seed', type=int, default=None, help='Random seed')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
if not torch.cuda.is_available():
|
|
raise EnvironmentError("GPU is required for inference.")
|
|
|
|
args = get_args()
|
|
|
|
if args.seed is not None:
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
|
|
tokenizer = get_tokenizer(args.model_dir)
|
|
model = get_model(args.model_dir, args.dtype)
|
|
|
|
calib_dataloader = get_calib_dataloader(tokenizer=tokenizer,
|
|
calib_size=args.calib_size)
|
|
model = quantize_and_export(model,
|
|
qformat=args.qformat,
|
|
calib_dataloader=calib_dataloader,
|
|
export_path=args.export_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|