mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
168 lines
4.9 KiB
Python
168 lines
4.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import contextlib
|
|
import ctypes
|
|
import platform
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
|
|
from ._utils import str_dtype_to_trt
|
|
from .logger import logger
|
|
from .plugin import _load_plugin_lib
|
|
|
|
net = None
|
|
|
|
_inited = False
|
|
|
|
|
|
def _init(log_level=None):
|
|
global _inited
|
|
if _inited:
|
|
return
|
|
_inited = True
|
|
# Move to __init__
|
|
if log_level is not None:
|
|
logger.set_level(log_level)
|
|
|
|
# load plugin lib
|
|
_load_plugin_lib()
|
|
|
|
# load FT decoder layer
|
|
project_dir = str(Path(__file__).parent.absolute())
|
|
if platform.system() == "Windows":
|
|
ft_decoder_lib = project_dir + '/libs/th_common.dll'
|
|
else:
|
|
ft_decoder_lib = project_dir + '/libs/libth_common.so'
|
|
try:
|
|
torch.classes.load_library(ft_decoder_lib)
|
|
except Exception as e:
|
|
msg = '\nFATAL: Decoding operators failed to load. This may be caused by the incompatibility between PyTorch and TensorRT-LLM. Please rebuild and install TensorRT-LLM.'
|
|
raise ImportError(str(e) + msg)
|
|
|
|
global net
|
|
logger.info('TensorRT-LLM inited.')
|
|
|
|
|
|
def default_net():
|
|
assert net, "Use builder to create network first, and use `set_network` or `net_guard` to set it to default"
|
|
return net
|
|
|
|
|
|
def default_trtnet():
|
|
return default_net().trt_network
|
|
|
|
|
|
def set_network(network):
|
|
global net
|
|
net = network
|
|
|
|
|
|
def switch_net_dtype(cur_dtype):
|
|
prev_dtype = default_net().dtype
|
|
default_net().dtype = cur_dtype
|
|
return prev_dtype
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def precision(dtype):
|
|
if isinstance(dtype, str):
|
|
dtype = str_dtype_to_trt(dtype)
|
|
prev_dtype = switch_net_dtype(dtype)
|
|
yield
|
|
switch_net_dtype(prev_dtype)
|
|
|
|
|
|
def serialize_engine(engine, path):
|
|
logger.info(f'Serializing engine to {path}...')
|
|
tik = time.time()
|
|
if isinstance(engine, trt.ICudaEngine):
|
|
engine = engine.serialize()
|
|
with open(path, 'wb') as f:
|
|
f.write(engine)
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Engine serialized. Total time: {t}')
|
|
|
|
|
|
def deserialize_engine(path):
|
|
runtime = trt.Runtime(logger.trt_logger)
|
|
with open(path, 'rb') as f:
|
|
logger.info(f'Loading engine from {path}...')
|
|
tik = time.time()
|
|
|
|
engine = runtime.deserialize_cuda_engine(f.read())
|
|
assert engine is not None
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Engine loaded. Total time: {t}')
|
|
return engine
|
|
|
|
|
|
_field_dtype_to_np_dtype_dict = {
|
|
trt.PluginFieldType.FLOAT16: np.float16,
|
|
trt.PluginFieldType.FLOAT32: np.float32,
|
|
trt.PluginFieldType.FLOAT64: np.float64,
|
|
trt.PluginFieldType.INT8: np.int8,
|
|
trt.PluginFieldType.INT16: np.int16,
|
|
trt.PluginFieldType.INT32: np.int32,
|
|
}
|
|
|
|
|
|
def field_dtype_to_np_dtype(dtype):
|
|
ret = _field_dtype_to_np_dtype_dict.get(dtype)
|
|
assert ret is not None, f'Unsupported dtype: {dtype}'
|
|
return ret
|
|
|
|
|
|
def convert_capsule_to_void_p(capsule):
|
|
ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p
|
|
ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [
|
|
ctypes.py_object, ctypes.c_char_p
|
|
]
|
|
return ctypes.pythonapi.PyCapsule_GetPointer(capsule, None)
|
|
|
|
|
|
def get_nparray_from_void_p(void_pointer, elem_size, field_dtype):
|
|
ctypes.pythonapi.PyMemoryView_FromMemory.restype = ctypes.py_object
|
|
ctypes.pythonapi.PyMemoryView_FromMemory.argtypes = [
|
|
ctypes.c_char_p, ctypes.c_ssize_t, ctypes.c_int
|
|
]
|
|
logger.info(
|
|
f'get_nparray: pointer = {void_pointer}, elem_size = {elem_size}')
|
|
char_pointer = ctypes.cast(void_pointer, ctypes.POINTER(ctypes.c_char))
|
|
np_dtype = field_dtype_to_np_dtype(field_dtype)
|
|
buf_bytes = elem_size * np.dtype(np_dtype).itemsize
|
|
logger.info(f'get_nparray: buf_bytes = {buf_bytes}')
|
|
mem_view = ctypes.pythonapi.PyMemoryView_FromMemory(
|
|
char_pointer, buf_bytes, 0) # number 0 represents PyBUF_READ
|
|
logger.info(
|
|
f'get_nparray: mem_view = {mem_view}, field_dtype = {field_dtype}')
|
|
buf = np.frombuffer(mem_view, np_dtype)
|
|
return buf
|
|
|
|
|
|
def get_scalar_from_field(field):
|
|
void_p = convert_capsule_to_void_p(field.data)
|
|
np_array = get_nparray_from_void_p(void_p, 1, field.type)
|
|
return np_array[0]
|