TensorRT-LLMs/tensorrt_llm/_common.py
石晓伟 59f41c067d
Update TensorRT-LLM (#708)
* Update TensorRT-LLM

* update

* Bump version to 0.7.0
2023-12-20 16:38:28 +08:00

168 lines
4.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import ctypes
import platform
import time
from pathlib import Path
import numpy as np
# isort: off
import torch
import tensorrt as trt
# isort: on
from ._utils import str_dtype_to_trt
from .logger import logger
from .plugin import _load_plugin_lib
net = None
_inited = False
def _init(log_level=None):
global _inited
if _inited:
return
_inited = True
# Move to __init__
if log_level is not None:
logger.set_level(log_level)
# load plugin lib
_load_plugin_lib()
# load FT decoder layer
project_dir = str(Path(__file__).parent.absolute())
if platform.system() == "Windows":
ft_decoder_lib = project_dir + '/libs/th_common.dll'
else:
ft_decoder_lib = project_dir + '/libs/libth_common.so'
try:
torch.classes.load_library(ft_decoder_lib)
except Exception as e:
msg = '\nFATAL: Decoding operators failed to load. This may be caused by the incompatibility between PyTorch and TensorRT-LLM. Please rebuild and install TensorRT-LLM.'
raise ImportError(str(e) + msg)
global net
logger.info('TensorRT-LLM inited.')
def default_net():
assert net, "Use builder to create network first, and use `set_network` or `net_guard` to set it to default"
return net
def default_trtnet():
return default_net().trt_network
def set_network(network):
global net
net = network
def switch_net_dtype(cur_dtype):
prev_dtype = default_net().dtype
default_net().dtype = cur_dtype
return prev_dtype
@contextlib.contextmanager
def precision(dtype):
if isinstance(dtype, str):
dtype = str_dtype_to_trt(dtype)
prev_dtype = switch_net_dtype(dtype)
yield
switch_net_dtype(prev_dtype)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
if isinstance(engine, trt.ICudaEngine):
engine = engine.serialize()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def deserialize_engine(path):
runtime = trt.Runtime(logger.trt_logger)
with open(path, 'rb') as f:
logger.info(f'Loading engine from {path}...')
tik = time.time()
engine = runtime.deserialize_cuda_engine(f.read())
assert engine is not None
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine loaded. Total time: {t}')
return engine
_field_dtype_to_np_dtype_dict = {
trt.PluginFieldType.FLOAT16: np.float16,
trt.PluginFieldType.FLOAT32: np.float32,
trt.PluginFieldType.FLOAT64: np.float64,
trt.PluginFieldType.INT8: np.int8,
trt.PluginFieldType.INT16: np.int16,
trt.PluginFieldType.INT32: np.int32,
}
def field_dtype_to_np_dtype(dtype):
ret = _field_dtype_to_np_dtype_dict.get(dtype)
assert ret is not None, f'Unsupported dtype: {dtype}'
return ret
def convert_capsule_to_void_p(capsule):
ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p
ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [
ctypes.py_object, ctypes.c_char_p
]
return ctypes.pythonapi.PyCapsule_GetPointer(capsule, None)
def get_nparray_from_void_p(void_pointer, elem_size, field_dtype):
ctypes.pythonapi.PyMemoryView_FromMemory.restype = ctypes.py_object
ctypes.pythonapi.PyMemoryView_FromMemory.argtypes = [
ctypes.c_char_p, ctypes.c_ssize_t, ctypes.c_int
]
logger.info(
f'get_nparray: pointer = {void_pointer}, elem_size = {elem_size}')
char_pointer = ctypes.cast(void_pointer, ctypes.POINTER(ctypes.c_char))
np_dtype = field_dtype_to_np_dtype(field_dtype)
buf_bytes = elem_size * np.dtype(np_dtype).itemsize
logger.info(f'get_nparray: buf_bytes = {buf_bytes}')
mem_view = ctypes.pythonapi.PyMemoryView_FromMemory(
char_pointer, buf_bytes, 0) # number 0 represents PyBUF_READ
logger.info(
f'get_nparray: mem_view = {mem_view}, field_dtype = {field_dtype}')
buf = np.frombuffer(mem_view, np_dtype)
return buf
def get_scalar_from_field(field):
void_p = convert_capsule_to_void_p(field.data)
np_array = get_nparray_from_void_p(void_p, 1, field.type)
return np_array[0]