TensorRT-LLMs/cpp/tensorrt_llm/thop/mxFp4BlockScaleMoe.cpp
ChristinaZ be576a3152
[None] [feat] Enable run_post_quant_allgather for MoE TRTLLM backend (#6794)
Signed-off-by: Christina Zhang <83400082+ChristinaZ@users.noreply.github.com>
2025-09-23 08:24:21 +08:00

578 lines
32 KiB
C++

/*
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <ATen/ops/index_select.h>
#include <c10/util/Exception.h>
#include <cstdint>
#include <memory>
#include <optional>
namespace torch_ext
{
namespace btg = batchedGemm::trtllm::gen;
using tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::RoutingMethodType;
using MoeRunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner;
torch::Tensor dtype_mxe2m1_block_scale_moe_runner(torch::optional<torch::Tensor> const& routing_logits,
torch::optional<torch::Tensor> const& routing_bias, torch::Tensor const& hidden_states,
std::optional<torch::Tensor> const& hidden_states_scale, torch::Tensor const& gemm1_weights,
torch::Tensor const& gemm1_weights_scale, std::optional<torch::Tensor> const& gemm1_bias,
std::optional<torch::Tensor> const& gemm1_alpha, std::optional<torch::Tensor> const& gemm1_beta,
std::optional<torch::Tensor> const& gemm1_clamp_limit, torch::Tensor const& gemm2_weights,
torch::Tensor const& gemm2_weights_scale, std::optional<torch::Tensor> const& gemm2_bias,
std::optional<torch::Tensor> const& output1_scale_scalar,
std::optional<torch::Tensor> const& output1_scale_gate_scalar,
std::optional<torch::Tensor> const& output2_scale_scalar, int64_t const num_experts, int64_t const top_k,
std::optional<int64_t> const n_group, std::optional<int64_t> const topk_group, int64_t const intermediate_size,
std::optional<int64_t> const hidden_size_output, int64_t const local_expert_offset, int64_t const local_num_experts,
std::optional<double> const routed_scaling_factor, int64_t const tile_tokens_dim, int64_t const routing_method_type,
btg::Dtype const dtype, MoeRunnerType& moe_runner, int64_t moeConfigIndex,
torch::optional<torch::Tensor> const& topk_weights, torch::optional<torch::Tensor> const& topk_ids)
{
TORCH_CHECK(tensorrt_llm::common::isSM100Family(), "Only SM100f is supported by MXFP4 block scale MOE");
TORCH_CHECK(tile_tokens_dim == 8 || tile_tokens_dim == 16 || tile_tokens_dim == 32 || tile_tokens_dim == 64,
"tile_tokens_dim must be 8, 16, 32, 64");
if (topk_ids.has_value() && topk_weights.has_value())
{
TORCH_CHECK(topk_ids.value().scalar_type() == at::ScalarType::Int, "topk_ids must be int.");
TORCH_CHECK(topk_weights.value().scalar_type() == at::ScalarType::BFloat16, "topk_weights must be bfloat.");
TORCH_CHECK(topk_ids.value().dim() == 2, "topk_ids must be 2D.");
TORCH_CHECK(topk_weights.value().dim() == 2, "topk_weights must be 2D.");
TORCH_CHECK(
topk_ids.value().sizes()[0] == hidden_states.sizes()[0], "topk_ids dim0 must match hidden_states dim0.");
TORCH_CHECK(topk_ids.value().sizes()[1] == top_k, "topk_ids dim1 must match top_k.");
TORCH_CHECK(topk_weights.value().sizes()[0] == hidden_states.sizes()[0],
"topk_weights dim0 must match hidden_states dim0.");
TORCH_CHECK(topk_weights.value().sizes()[1] == top_k, "topk_weights dim1 must match top_k.");
}
else if (routing_logits.has_value())
{
if (static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::DeepSeekV3)
{
TORCH_CHECK(routing_logits.value().scalar_type() == at::ScalarType::Float, "routing_logits must be float");
}
else
{
TORCH_CHECK(
routing_logits.value().scalar_type() == at::ScalarType::BFloat16, "routing_logits must be bfloat16");
}
TORCH_CHECK(routing_logits.value().dim() == 2, "routing_logits must be 2D.");
TORCH_CHECK(routing_logits.value().sizes()[1] == num_experts, "routing_logits dim1 must match num_experts.");
}
else
{
TORCH_CHECK(false, "routing_logits or (topk_ids and topk_weights) must be provided.");
}
if (topk_ids.has_value() && topk_weights.has_value() && routing_logits.has_value())
{
TLLM_LOG_WARNING(
"When logits and (topk_ids and topk_weights) are both provided, we only use (topk_ids and topk_weights).");
}
if (topk_ids.has_value())
{
TORCH_CHECK(topk_ids.value().sizes()[0] == hidden_states.sizes()[0],
"topk_ids and hidden_states must have the same number of tokens.");
}
else
{
TORCH_CHECK(routing_logits.value().sizes()[0] == hidden_states.sizes()[0],
"routing_logits and hidden_states must have the same number of tokens.");
}
if (routing_bias.has_value())
{
TORCH_CHECK(routing_bias.value().scalar_type() == at::ScalarType::BFloat16, "routing_bias must be bfloat16.");
TORCH_CHECK(routing_bias.value().dim() == 1, "routing_bias must be 1D.");
TORCH_CHECK(routing_bias.value().sizes()[0] == num_experts, "routing_bias has incorrect shape.");
}
if (n_group.has_value() && n_group.value() != 0)
{
TORCH_CHECK(static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::DeepSeekV3,
"Routing kernel with groups implies DeepSeekV3 routing method.");
TORCH_CHECK(topk_group.has_value(), "if n_group is given, topk_group must be given");
TORCH_CHECK(num_experts % n_group.value() == 0, "num_experts must be divisible by n_group");
TORCH_CHECK(top_k <= 8 && top_k > 0, "Current routing kernel (with groups) only supports top_k<=8 && top_k>0.");
TORCH_CHECK(topk_group.value() <= 4 && topk_group.value() > 0,
"Current routing kernel only (with groups) supports topk_group<=4 && topk_group > 0.");
TORCH_CHECK(topk_group.value() <= n_group.value(), "n_group must not be smaller than topk_group.");
// This check ensures we have enough experts in the selected groups to handle the top_k routing
TORCH_CHECK(top_k < (topk_group.value() * num_experts / n_group.value()),
"top_k must be less than total number of experts in selected groups");
}
else if (static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::Renormalize
|| static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::RenormalizeNaive)
{
TORCH_CHECK(top_k <= 8 && top_k > 0,
"Current routing kernel (no groups, renormalize) only supports top_k<=8 && top_k>0.");
}
TORCH_CHECK(num_experts % 4 == 0, "Routing kernel expects that num_experts must be divisible by 4");
TORCH_CHECK(num_experts > top_k, "num_experts must be greater than top_k");
// If both routing inputs are provided, they must be on the same device
if (routing_logits.has_value() && topk_ids.has_value())
{
TORCH_CHECK(
routing_logits->device() == topk_ids->device(), "routing_logits and topk_ids must be on the same device");
}
tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::MoERunnerArgs args;
tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::MoEWorkspace workspace;
// setup args
args.mDtypeElt = dtype;
args.routing_logits = routing_logits.has_value() ? routing_logits.value().data_ptr() : nullptr;
args.routing_bias = routing_bias.has_value() ? routing_bias.value().data_ptr() : nullptr;
args.hidden_states = hidden_states.data_ptr();
args.hidden_states_scale = hidden_states_scale.has_value() ? hidden_states_scale.value().data_ptr() : nullptr;
args.topk_weights = topk_weights.has_value() ? topk_weights.value().data_ptr() : nullptr;
args.topk_ids = topk_ids.has_value() ? static_cast<int32_t*>(topk_ids.value().data_ptr()) : nullptr;
args.gemm1_weights = gemm1_weights.data_ptr();
args.gemm1_weights_scale = gemm1_weights_scale.data_ptr();
args.gemm2_weights = gemm2_weights.data_ptr();
args.gemm2_weights_scale = gemm2_weights_scale.data_ptr();
args.gemm1_bias = gemm1_bias.has_value() ? gemm1_bias.value().data_ptr<float>() : nullptr;
args.gemm1_alpha = gemm1_alpha.has_value() ? gemm1_alpha.value().data_ptr<float>() : nullptr;
args.gemm1_beta = gemm1_beta.has_value() ? gemm1_beta.value().data_ptr<float>() : nullptr;
args.gemm1_clamp_limit = gemm1_clamp_limit.has_value() ? gemm1_clamp_limit.value().data_ptr<float>() : nullptr;
args.gemm2_bias = gemm2_bias.has_value() ? gemm2_bias.value().data_ptr<float>() : nullptr;
args.output1_scales_scalar
= output1_scale_scalar.has_value() ? output1_scale_scalar.value().data_ptr<float>() : nullptr;
args.output1_scales_gate_scalar
= output1_scale_gate_scalar.has_value() ? output1_scale_gate_scalar.value().data_ptr<float>() : nullptr;
args.output2_scales_scalar
= output2_scale_scalar.has_value() ? output2_scale_scalar.value().data_ptr<float>() : nullptr;
args.num_tokens = hidden_states.sizes()[0];
args.num_experts = num_experts;
args.hidden_size = hidden_states.sizes()[1];
args.hidden_size_output = hidden_size_output.value_or(args.hidden_size);
args.top_k = top_k;
args.n_group = n_group.value_or(0);
args.topk_group = topk_group.value_or(0);
args.local_expert_offset = local_expert_offset;
args.local_num_experts = local_num_experts;
args.routed_scaling_factor = routed_scaling_factor.value_or(1.0);
args.intermediate_size = intermediate_size;
// allocate workspace for routing kernel
if (routing_logits.has_value() && topk_ids.has_value())
{
TORCH_CHECK(routing_logits.value().device() == topk_ids.value().device(),
"routing_logits and topk_ids must be on the same device");
}
auto routing_device = routing_logits.has_value() ? routing_logits.value().device() : topk_ids.value().device();
at::Tensor num_tokens_per_expert
= at::detail::empty_cuda({num_experts}, at::ScalarType::Int, routing_device, std::nullopt);
int32_t max_num_padded_tokens
= tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::getMaxPermutedPaddedCount(
args.num_tokens, top_k, num_experts, tile_tokens_dim);
at::Tensor total_num_padded_tokens
= at::empty({}, at::TensorOptions().device(routing_device).dtype(at::ScalarType::Int));
at::Tensor expanded_idx_to_permuted_idx
= at::detail::empty_cuda({args.num_tokens * args.top_k}, at::ScalarType::Int, routing_device, std::nullopt);
at::Tensor permuted_idx_to_token_idx
= at::detail::empty_cuda({max_num_padded_tokens}, at::ScalarType::Int, routing_device, std::nullopt);
at::Tensor expert_weights
= at::detail::empty_cuda({args.num_tokens, args.top_k}, at::ScalarType::BFloat16, routing_device, std::nullopt);
at::Tensor expert_indexes
= at::detail::empty_cuda({args.num_tokens, args.top_k}, at::ScalarType::Int, routing_device, std::nullopt);
int64_t const size_of_expert_count_histogram = std::max(num_experts * 2, int64_t(256 * 2));
at::Tensor expert_count_histogram
= at::detail::empty_cuda({size_of_expert_count_histogram}, at::ScalarType::Int, routing_device, std::nullopt);
// Set the optional pointer to the expert weights and expert ids
void* expert_weights_ptr = args.topk_weights ? args.topk_weights : expert_weights.data_ptr();
int32_t const sf_block_size = 32;
// allocate workspace for activation/gemm/finalize kernels
auto const gemm1_output_type
= dtype == btg::Dtype::Bfloat16 ? at::ScalarType::BFloat16 : at::ScalarType::Float8_e4m3fn;
at::Tensor gemm1_output = at::detail::empty_cuda(
{max_num_padded_tokens, intermediate_size}, gemm1_output_type, routing_device, std::nullopt);
std::optional<at::Tensor> gemm1_output_scale;
if (dtype == btg::Dtype::MxE4m3)
{
int64_t sf_size
= tensorrt_llm::computeSwizzledLayoutSFSize(max_num_padded_tokens, intermediate_size / sf_block_size);
gemm1_output_scale = at::detail::empty_cuda({sf_size}, SF_DTYPE, routing_device, std::nullopt);
}
at::Tensor gemm2_output = at::detail::empty_cuda(
{max_num_padded_tokens, args.hidden_size}, at::ScalarType::BFloat16, routing_device, std::nullopt);
int32_t max_num_ctas = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::getMaxNumCtasInBatchDim(
args.num_tokens, args.top_k, args.num_experts, tile_tokens_dim);
at::Tensor cta_idx_xy_to_batch_idx
= at::detail::empty_cuda({max_num_ctas}, at::ScalarType::Int, routing_device, std::nullopt);
at::Tensor cta_idx_xy_to_mn_limit
= at::detail::empty_cuda({max_num_ctas}, at::ScalarType::Int, routing_device, std::nullopt);
at::Tensor num_non_exiting_ctas
= at::empty({}, at::TensorOptions().device(routing_device).dtype(at::ScalarType::Int));
// FIXME: check shape
TORCH_CHECK(dtype == btg::Dtype::MxE4m3 || dtype == btg::Dtype::Bfloat16 || dtype == btg::Dtype::E4m3,
"dtype must be MxE4m3 or Bfloat16 or E4m3.");
if (dtype == btg::Dtype::MxE4m3)
{
TORCH_CHECK(hidden_states_scale.has_value(), "hidden_states_scale must be provided for MxE4m3.");
}
else
{
TORCH_CHECK(
!hidden_states_scale.has_value(), "hidden_states_scale must not be provided for Bfloat16 and E4m3.");
}
//
// TopK routing
//
tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::Runner routing_runner(tile_tokens_dim);
auto const& stream = at::cuda::getCurrentCUDAStream(
routing_logits.has_value() ? routing_logits.value().get_device() : topk_ids.value().get_device());
routing_runner.run(args.routing_logits, args.routing_bias, args.num_tokens, args.num_experts, args.top_k,
args.n_group, args.topk_group, args.local_expert_offset, args.local_num_experts, args.routed_scaling_factor,
expert_indexes.data_ptr<int>(), expert_count_histogram.data_ptr<int>(), total_num_padded_tokens.data_ptr<int>(),
expanded_idx_to_permuted_idx.data_ptr<int>(), nullptr, /*permuted_idx_to_expanded_idx.data_ptr<int>(),*/
permuted_idx_to_token_idx.data_ptr<int>(), expert_weights_ptr, args.topk_ids,
num_tokens_per_expert.data_ptr<int>(), cta_idx_xy_to_batch_idx.data_ptr<int>(),
cta_idx_xy_to_mn_limit.data_ptr<int>(), num_non_exiting_ctas.data_ptr<int>(), args.mDtypeElt,
false /* use_routing_scales_on_input */, false /* use_deep_seek_fp8 */,
static_cast<RoutingMethodType>(routing_method_type), stream);
//
// FC13 (gemm1) + FC2 (gemm2)
//
if (dtype == btg::Dtype::MxE4m3 || dtype == btg::Dtype::E4m3)
{
TORCH_CHECK(hidden_states.scalar_type() == at::ScalarType::Float8_e4m3fn,
"hidden_states must be Float8_e4m3fn, got %s.", c10::toString(hidden_states.scalar_type()));
}
else
{
TORCH_CHECK(hidden_states.scalar_type() == at::ScalarType::BFloat16, "hidden_states must be BFloat16, got %s.",
c10::toString(hidden_states.scalar_type()));
}
if (dtype == btg::Dtype::MxE4m3)
{
TORCH_CHECK(hidden_states_scale->scalar_type() == SF_DTYPE, "hidden_states_scale must be UInt8, got %s.",
c10::toString(hidden_states_scale->scalar_type()));
TORCH_CHECK(hidden_states_scale->dim() == 1, "hidden_states_scale must be 1D.");
TORCH_CHECK(hidden_states_scale->sizes()[0]
== tensorrt_llm::computeLinearLayoutSFSize(args.num_tokens, args.hidden_size / sf_block_size),
"hidden_states_scale has incorrect size");
}
TORCH_CHECK(gemm1_weights.scalar_type() == FLOAT4_E2M1X2, "gemm1_weights must be byte, got %s.",
c10::toString(gemm1_weights.scalar_type()));
TORCH_CHECK(gemm1_weights.dim() == 3, "gemm1_weights must be 3D.");
TORCH_CHECK(gemm1_weights.sizes()[1] % 2 == 0, "the second dimension of weights must be even.");
TORCH_CHECK(2 * intermediate_size == gemm1_weights.sizes()[1], "intermediate_size has incorrect dim 1.");
// The actual shape of the weights[2] is 2 times larger than and hidden_states[1]
// due to the fact that 2 e2m1 are packed into 1 byte for FP4 weights.
TORCH_CHECK(gemm1_weights.sizes()[2] * 2 == hidden_states.sizes()[1],
"the third dimension of weights must be equal to hidden_size.");
TORCH_CHECK(gemm1_weights_scale.scalar_type() == SF_DTYPE, "gemm1_weights_scale must be UInt8, got %s.",
c10::toString(gemm1_weights_scale.scalar_type()));
TORCH_CHECK(gemm1_weights_scale.dim() == 3, "gemm1_weights_scale must be 3D.");
TORCH_CHECK(gemm1_weights_scale.sizes()[0] == local_num_experts, "gemm1_weights_scale has incorrect dim 0.");
TORCH_CHECK(intermediate_size % sf_block_size == 0, "the second dimension of weights must be a multiple of 32.");
TORCH_CHECK(gemm1_weights_scale.sizes()[1] == 2 * intermediate_size, "gemm1_weights_scale has incorrect dim 1.");
TORCH_CHECK(
gemm1_weights_scale.sizes()[2] == args.hidden_size / sf_block_size, "gemm1_weights_scale has incorrect dim 2.");
if (gemm1_bias.has_value())
{
TORCH_CHECK(gemm1_bias.value().scalar_type() == at::ScalarType::Float, "gemm1_bias must be float, got %s.",
c10::toString(gemm1_bias.value().scalar_type()));
TORCH_CHECK(gemm1_bias.value().dim() == 2, "gemm1_bias must be 2D.");
TORCH_CHECK(gemm1_bias.value().sizes()[0] == local_num_experts, "gemm1_bias has incorrect dim 0.");
TORCH_CHECK(gemm1_bias.value().sizes()[1] == 2 * intermediate_size, "gemm1_bias has incorrect dim 1.");
}
if (gemm1_alpha.has_value())
{
TORCH_CHECK(gemm1_alpha.value().scalar_type() == at::ScalarType::Float, "gemm1_alpha must be float, got %s.",
c10::toString(gemm1_alpha.value().scalar_type()));
TORCH_CHECK(gemm1_alpha.value().dim() == 1, "gemm1_alpha must be 1D.");
TORCH_CHECK(gemm1_alpha.value().sizes()[0] == local_num_experts, "gemm1_alpha has incorrect dim 0.");
}
if (gemm1_beta.has_value())
{
TORCH_CHECK(gemm1_beta.value().scalar_type() == at::ScalarType::Float, "gemm1_beta must be float, got %s.",
c10::toString(gemm1_beta.value().scalar_type()));
TORCH_CHECK(gemm1_beta.value().dim() == 1, "gemm1_beta must be 1D.");
TORCH_CHECK(gemm1_beta.value().sizes()[0] == local_num_experts, "gemm1_beta has incorrect dim 0.");
}
if (gemm1_clamp_limit.has_value())
{
TORCH_CHECK(gemm1_clamp_limit.value().scalar_type() == at::ScalarType::Float,
"gemm1_clamp_limit must be float, got %s.", c10::toString(gemm1_clamp_limit.value().scalar_type()));
TORCH_CHECK(gemm1_clamp_limit.value().dim() == 1, "gemm1_clamp_limit must be 1D.");
TORCH_CHECK(
gemm1_clamp_limit.value().sizes()[0] == local_num_experts, "gemm1_clamp_limit has incorrect dim 0.");
}
TORCH_CHECK(gemm2_weights.scalar_type() == FLOAT4_E2M1X2, "gemm2_weights must be byte, got %s.",
c10::toString(gemm2_weights.scalar_type()));
TORCH_CHECK(gemm2_weights.dim() == 3, "gemm2_weights must be 3D.");
// / 2 to compensate for the fact that we pack 2 e2m1 into 1 byte.
TORCH_CHECK(gemm2_weights.sizes()[2] == intermediate_size / 2,
"the third dimension of weights must be equal to intermediate_size.");
TORCH_CHECK(gemm2_weights_scale.scalar_type() == SF_DTYPE, "gemm2_weights_scale must be UInt8, got %s.",
c10::toString(gemm2_weights_scale.scalar_type()));
TORCH_CHECK(gemm2_weights_scale.dim() == 3, "gemm2_weights_scale must be 3D.");
TORCH_CHECK(gemm2_weights_scale.sizes()[0] == local_num_experts, "gemm2_weights_scale has incorrect dim 0.");
TORCH_CHECK(gemm2_weights_scale.sizes()[1] == args.hidden_size, "gemm2_weights_scale has incorrect dim 1.");
TORCH_CHECK(gemm2_weights_scale.sizes()[2] == intermediate_size / sf_block_size,
"gemm2_weights_scale has incorrect dim 2.");
if (gemm2_bias.has_value())
{
TORCH_CHECK(gemm2_bias.value().scalar_type() == at::ScalarType::Float, "gemm2_bias must be float, got %s.",
c10::toString(gemm2_bias.value().scalar_type()));
TORCH_CHECK(gemm2_bias.value().dim() == 2, "gemm2_bias must be 2D.");
TORCH_CHECK(gemm2_bias.value().sizes()[0] == local_num_experts, "gemm2_bias has incorrect dim 0.");
TORCH_CHECK(gemm2_bias.value().sizes()[1] == args.hidden_size, "gemm2_bias has incorrect dim 1.");
}
if (dtype == btg::Dtype::E4m3)
{
TORCH_CHECK(output1_scale_scalar.has_value(), "output1_scale_scalar must be provided for MxE4m3.");
TORCH_CHECK(output1_scale_gate_scalar.has_value(), "output1_scale_gate_scalar must be provided for MxE4m3.");
TORCH_CHECK(output2_scale_scalar.has_value(), "output2_scale_scalar must be provided for MxE4m3.");
TORCH_CHECK(
output1_scale_scalar->scalar_type() == at::ScalarType::Float, "output1_scales_scalar must be float.");
TORCH_CHECK(output1_scale_scalar->dim() == 1, "output1_scales_scalar must be 1D.");
TORCH_CHECK(
output1_scale_scalar->sizes()[0] == local_num_experts, "output1_scales_scalar has incorrect dim 0.");
TORCH_CHECK(output1_scale_gate_scalar->scalar_type() == at::ScalarType::Float,
"output1_scales_gate_scalar must be float.");
TORCH_CHECK(output1_scale_gate_scalar->dim() == 1, "output1_scales_gate_scalar must be 1D.");
TORCH_CHECK(output1_scale_gate_scalar->sizes()[0] == local_num_experts,
"output1_scales_gate_scalar has incorrect dim 0.");
TORCH_CHECK(
output2_scale_scalar->scalar_type() == at::ScalarType::Float, "output2_scales_scalar must be float.");
TORCH_CHECK(output2_scale_scalar->dim() == 1, "output2_scales_scalar must be 1D.");
TORCH_CHECK(
output2_scale_scalar->sizes()[0] == local_num_experts, "output2_scales_scalar has incorrect dim 0.");
}
// allocate output
at::Tensor output = at::detail::empty_cuda({args.num_tokens, args.hidden_size_output.value()},
at::ScalarType::BFloat16, hidden_states.device(), std::nullopt);
// setup workspace
workspace.total_num_padded_tokens = total_num_padded_tokens.data_ptr<int>();
workspace.total_max_padded_tokens = max_num_padded_tokens;
workspace.ProjUpTileN = tile_tokens_dim;
workspace.routing_expert_indexes = expert_indexes.data_ptr<int>();
workspace.permuted_idx_size = total_num_padded_tokens.data_ptr<int>();
workspace.expanded_idx_to_permuted_idx
= expanded_idx_to_permuted_idx.data_ptr<int>(); // Needed by permute/finalize kernels
workspace.permuted_idx_to_token_idx = permuted_idx_to_token_idx.data_ptr<int>(); // Needed by permuteGemm1 kernel
workspace.expert_weights = expert_weights_ptr; // Consumed by finalize kernel
workspace.cta_idx_xy_to_batch_idx = cta_idx_xy_to_batch_idx.data_ptr<int>();
workspace.cta_idx_xy_to_mn_limit = cta_idx_xy_to_mn_limit.data_ptr<int>();
workspace.num_non_exiting_ctas = num_non_exiting_ctas.data_ptr<int>();
// gemm1 intermediate ws
workspace.gemm1_output = gemm1_output.data_ptr();
workspace.gemm1_output_scale
= gemm1_output_scale.has_value() ? reinterpret_cast<float*>(gemm1_output_scale->data_ptr()) : nullptr;
// gemm2 intermediate ws
workspace.gemm2_output = gemm2_output.data_ptr();
workspace.gemm2_output_scale = nullptr;
args.output = output.data_ptr();
args.output_scale = nullptr;
auto workspace_sizes = moe_runner.getWorkspaceSizeInBytes(args, moeConfigIndex);
at::Tensor workspace_fc1 = at::detail::empty_cuda(
{std::get<0>(workspace_sizes)}, at::ScalarType::Char, hidden_states.device(), std::nullopt);
at::Tensor workspace_fc2 = at::detail::empty_cuda(
{std::get<1>(workspace_sizes)}, at::ScalarType::Char, hidden_states.device(), std::nullopt);
workspace.bmm1_workspace = workspace_fc1.data_ptr();
workspace.bmm2_workspace = workspace_fc2.data_ptr();
auto const& moe_stream = at::cuda::getCurrentCUDAStream(hidden_states.get_device());
moe_runner.run(args, workspace, hidden_states.get_device(), moe_stream, moeConfigIndex);
return output;
}
// Wrapped the TRTLLM-Gen kernel runner in a Torch custom class to allow
// use with the torch workflow autotuner class.
class Bf16MxE2m1BlockScaleMoeRunner : public torch::CustomClassHolder
{
public:
explicit Bf16MxE2m1BlockScaleMoeRunner(int64_t tileTokensDim, int64_t actType)
: mTileTokensDim(tileTokensDim)
{
mRunner = std::make_unique<RunnerType>(mDtypeAct, mDtypeWeights, mUseDeepSeekFp8, mTileTokensDim,
static_cast<tensorrt_llm::kernels::ActType>(actType));
}
[[nodiscard]] std::vector<int64_t> getValidConfigs(
int64_t topK, int64_t hiddenSize, int64_t intermediateSize, int64_t numLocalExperts, int64_t numTokens) const
{
return mRunner->getValidConfigIndices(topK, hiddenSize, intermediateSize, numLocalExperts, numTokens);
}
// BF16 run does not use hidden_states_scale
[[nodiscard]] torch::Tensor run(torch::optional<torch::Tensor> const& routing_logits,
std::optional<torch::Tensor> const& routing_bias, torch::Tensor const& hidden_states,
torch::Tensor const& gemm1_weights, torch::Tensor const& gemm1_weights_scale,
std::optional<torch::Tensor> const& gemm1_bias, std::optional<torch::Tensor> const& gemm1_alpha,
std::optional<torch::Tensor> const& gemm1_beta, std::optional<torch::Tensor> const& gemm1_clamp_limit,
torch::Tensor const& gemm2_weights, torch::Tensor const& gemm2_weights_scale,
std::optional<torch::Tensor> const& gemm2_bias, int64_t num_experts, int64_t top_k,
std::optional<int64_t> const n_group, std::optional<int64_t> const topk_group, int64_t intermediate_size,
int64_t local_expert_offset, int64_t local_num_experts, std::optional<double> routed_scaling_factor,
int64_t routing_method_type, int64_t moeConfigIndex, torch::optional<torch::Tensor> const& topk_weights,
torch::optional<torch::Tensor> const& topk_ids)
{
// Autotuner has requested a default or 'fallback' config index
if (moeConfigIndex == -1)
{
auto const num_tokens = hidden_states.sizes()[0];
auto const hidden_size = hidden_states.sizes()[1];
moeConfigIndex = mRunner->getDefaultValidConfigIndex(
top_k, hidden_size, intermediate_size, local_num_experts, num_tokens);
}
return dtype_mxe2m1_block_scale_moe_runner(routing_logits, routing_bias, hidden_states, std::nullopt,
gemm1_weights, gemm1_weights_scale, gemm1_bias, gemm1_alpha, gemm1_beta, gemm1_clamp_limit, gemm2_weights,
gemm2_weights_scale, gemm2_bias, std::nullopt, std::nullopt, std::nullopt, num_experts, top_k, n_group,
topk_group, intermediate_size, std::nullopt, local_expert_offset, local_num_experts, routed_scaling_factor,
mTileTokensDim, routing_method_type, mDtypeAct, *mRunner, moeConfigIndex, topk_weights, topk_ids);
}
private:
using RunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner;
std::unique_ptr<RunnerType> mRunner;
btg::Dtype mDtypeAct{btg::Dtype::Bfloat16};
btg::Dtype mDtypeWeights{btg::Dtype::MxE2m1};
bool mUseDeepSeekFp8{false};
int64_t mTileTokensDim;
};
class MxE4m3MxE2m1BlockScaleMoeRunner : public torch::CustomClassHolder
{
public:
explicit MxE4m3MxE2m1BlockScaleMoeRunner(int64_t tileTokensDim, int64_t actType, bool isMxFp8)
: mDtypeAct(isMxFp8 ? btg::Dtype::MxE4m3 : btg::Dtype::E4m3)
, mTileTokensDim(tileTokensDim)
{
mRunner = std::make_unique<RunnerType>(mDtypeAct, mDtypeWeights, mUseDeepSeekFp8, mTileTokensDim,
static_cast<tensorrt_llm::kernels::ActType>(actType));
}
[[nodiscard]] std::vector<int64_t> getValidConfigs(
int64_t topK, int64_t hiddenSize, int64_t intermediateSize, int64_t numLocalExperts, int64_t numTokens) const
{
return mRunner->getValidConfigIndices(topK, hiddenSize, intermediateSize, numLocalExperts, numTokens);
}
[[nodiscard]] torch::Tensor run(torch::optional<torch::Tensor> const& routing_logits,
std::optional<torch::Tensor> const& routing_bias, torch::Tensor const& hidden_states,
std::optional<torch::Tensor> const& hidden_states_scale, torch::Tensor const& gemm1_weights,
torch::Tensor const& gemm1_weights_scale, std::optional<torch::Tensor> const& gemm1_bias,
std::optional<torch::Tensor> const& gemm1_alpha, std::optional<torch::Tensor> const& gemm1_beta,
std::optional<torch::Tensor> const& gemm1_clamp_limit, torch::Tensor const& gemm2_weights,
torch::Tensor const& gemm2_weights_scale, std::optional<torch::Tensor> const& gemm2_bias,
std::optional<torch::Tensor> const& output1_scale_scalar,
std::optional<torch::Tensor> const& output1_scale_gate_scalar,
std::optional<torch::Tensor> const& output2_scale_scalar, int64_t num_experts, int64_t top_k,
std::optional<int64_t> const n_group, std::optional<int64_t> const topk_group, int64_t intermediate_size,
std::optional<int64_t> const hidden_size_output, int64_t local_expert_offset, int64_t local_num_experts,
std::optional<double> routed_scaling_factor, int64_t routing_method_type, int64_t moeConfigIndex,
torch::optional<torch::Tensor> const& topk_weights, torch::optional<torch::Tensor> const& topk_ids)
{
// Autotuner has requested a default or 'fallback' config index
if (moeConfigIndex == -1)
{
auto const num_tokens = hidden_states.sizes()[0];
auto const hidden_size = hidden_states.sizes()[1];
moeConfigIndex = mRunner->getDefaultValidConfigIndex(
top_k, hidden_size, intermediate_size, local_num_experts, num_tokens);
}
return dtype_mxe2m1_block_scale_moe_runner(routing_logits, routing_bias, hidden_states, hidden_states_scale,
gemm1_weights, gemm1_weights_scale, gemm1_bias, gemm1_alpha, gemm1_beta, gemm1_clamp_limit, gemm2_weights,
gemm2_weights_scale, gemm2_bias, output1_scale_scalar, output1_scale_gate_scalar, output2_scale_scalar,
num_experts, top_k, n_group, topk_group, intermediate_size, hidden_size_output, local_expert_offset,
local_num_experts, routed_scaling_factor, mTileTokensDim, routing_method_type, mDtypeAct, *mRunner,
moeConfigIndex, topk_weights, topk_ids);
}
private:
using RunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner;
std::unique_ptr<RunnerType> mRunner;
btg::Dtype mDtypeAct{btg::Dtype::MxE4m3};
btg::Dtype mDtypeWeights{btg::Dtype::MxE2m1};
bool mUseDeepSeekFp8{false};
int64_t mTileTokensDim;
};
} // namespace torch_ext
// Accepts CUDA tensor only
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.class_<torch_ext::Bf16MxE2m1BlockScaleMoeRunner>("Bf16MxE2m1BlockScaleMoERunner")
.def(torch::init<int64_t, int64_t>())
.def("get_valid_configs", &torch_ext::Bf16MxE2m1BlockScaleMoeRunner::getValidConfigs)
.def("run_moe", &torch_ext::Bf16MxE2m1BlockScaleMoeRunner::run);
m.class_<torch_ext::MxE4m3MxE2m1BlockScaleMoeRunner>("MxE4m3MxE2m1BlockScaleMoERunner")
.def(torch::init<int64_t, int64_t, bool>())
.def("get_valid_configs", &torch_ext::MxE4m3MxE2m1BlockScaleMoeRunner::getValidConfigs)
.def("run_moe", &torch_ext::MxE4m3MxE2m1BlockScaleMoeRunner::run);
}