mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
151 lines
5.8 KiB
Python
151 lines
5.8 KiB
Python
from tensorrt_llm._torch.pyexecutor.sampler import TorchSampler
|
|
from tensorrt_llm._torch.speculative.interface import SpecConfig, SpecMetadata
|
|
|
|
from .draft_target import DraftTargetSpecMetadata
|
|
from .eagle3 import (Eagle3OneModelSampler, Eagle3OneModelSpecMetadata,
|
|
Eagle3OneModelWorker, Eagle3ResourceManager,
|
|
Eagle3SpecMetadata)
|
|
from .mtp import (MTPEagleWorker, MTPHiddenStatesManager, MTPSampler,
|
|
MTPSpecMetadata, MTPWorker)
|
|
from .ngram import NGramDrafter, NGramPoolManager
|
|
|
|
|
|
def get_spec_metadata(spec_config,
|
|
max_num_requests,
|
|
max_num_tokens,
|
|
spec_resource_manager=None,
|
|
is_draft_model=False):
|
|
if spec_config.spec_dec_mode.is_mtp():
|
|
return MTPSpecMetadata(
|
|
max_draft_tokens=spec_config.max_draft_tokens,
|
|
spec_dec_mode=spec_config.spec_dec_mode,
|
|
mtp_num_modules=spec_config.num_nextn_predict_layers,
|
|
max_num_requests=max_num_requests,
|
|
mtp_hidden_states_manager=spec_resource_manager,
|
|
)
|
|
if spec_config.spec_dec_mode.is_eagle3():
|
|
return Eagle3SpecMetadata(
|
|
max_draft_tokens=spec_config.max_draft_tokens,
|
|
spec_dec_mode=spec_config.spec_dec_mode,
|
|
max_num_requests=max_num_requests,
|
|
num_layers=spec_config.num_layers,
|
|
hidden_size=spec_config.hidden_size,
|
|
max_num_tokens=max_num_tokens,
|
|
dtype=spec_config.dtype,
|
|
is_draft_model=is_draft_model,
|
|
eagle3_resource_manager=spec_resource_manager,
|
|
)
|
|
if spec_config.spec_dec_mode.is_eagle3_one_model():
|
|
return Eagle3OneModelSpecMetadata(
|
|
max_draft_tokens=spec_config.max_draft_tokens,
|
|
spec_dec_mode=spec_config.spec_dec_mode,
|
|
max_num_requests=max_num_requests,
|
|
num_layers=spec_config.num_layers,
|
|
hidden_size=spec_config.hidden_size,
|
|
max_num_tokens=max_num_tokens,
|
|
)
|
|
if spec_config.spec_dec_mode.is_draft_target():
|
|
return DraftTargetSpecMetadata(
|
|
max_draft_tokens=spec_config.max_draft_tokens,
|
|
spec_dec_mode=spec_config.spec_dec_mode,
|
|
max_num_requests=max_num_requests,
|
|
)
|
|
if spec_config.spec_dec_mode.is_ngram(
|
|
) or spec_config.spec_dec_mode.is_user_provided():
|
|
return SpecMetadata(
|
|
max_draft_tokens=spec_config.max_draft_tokens,
|
|
spec_dec_mode=spec_config.spec_dec_mode,
|
|
max_num_requests=max_num_requests,
|
|
)
|
|
return None
|
|
|
|
|
|
def get_spec_resource_manager(model_engine,
|
|
draft_model_engine=None,
|
|
drafter=None):
|
|
spec_config = model_engine.spec_config
|
|
if spec_config is None:
|
|
return None
|
|
model_config = model_engine.model.config
|
|
max_num_requests = model_engine.batch_size
|
|
max_seq_len = model_engine.max_seq_len
|
|
max_num_tokens = model_engine.max_num_tokens
|
|
spec_dec_mode = spec_config.spec_dec_mode
|
|
if spec_dec_mode.is_mtp_eagle():
|
|
if spec_config.use_relaxed_acceptance_for_thinking:
|
|
return MTPHiddenStatesManager(
|
|
spec_config,
|
|
model_config.torch_dtype,
|
|
model_config.hidden_size,
|
|
max_num_requests,
|
|
)
|
|
else:
|
|
return None
|
|
if spec_dec_mode.is_mtp():
|
|
return MTPHiddenStatesManager(
|
|
spec_config,
|
|
model_config.torch_dtype,
|
|
model_config.hidden_size,
|
|
max_num_requests,
|
|
)
|
|
if spec_dec_mode.is_eagle3():
|
|
assert draft_model_engine is not None, "Draft model engine is required for Eagle3 two model flow."
|
|
return Eagle3ResourceManager(
|
|
spec_config,
|
|
draft_model_engine.model.config.torch_dtype,
|
|
model_config.hidden_size,
|
|
max_num_requests,
|
|
max_seq_len,
|
|
max_num_tokens,
|
|
)
|
|
if spec_dec_mode.is_ngram() or spec_dec_mode.is_user_provided():
|
|
assert drafter is not None, "Drafter is required for ngram or user provided speculative decoding."
|
|
return drafter.spec_resource_manager
|
|
return None
|
|
|
|
|
|
def get_spec_decoder(sampler_args: TorchSampler.Args, spec_config: SpecConfig):
|
|
if spec_config.spec_dec_mode.is_mtp():
|
|
return MTPSampler(sampler_args,
|
|
nextn=spec_config.num_nextn_predict_layers)
|
|
if spec_config.spec_dec_mode.is_eagle3():
|
|
# TorchSampler handles Eagle3 gracefully, by integrating d2t into the sampling process
|
|
return TorchSampler(sampler_args)
|
|
if spec_config.spec_dec_mode.is_eagle3_one_model():
|
|
return Eagle3OneModelSampler(sampler_args)
|
|
raise ValueError(
|
|
f"Unsupported speculative decoding mode: {spec_config.spec_dec_mode}")
|
|
|
|
|
|
def get_spec_drafter(model_engine):
|
|
spec_config = model_engine.spec_config
|
|
max_num_requests = model_engine.batch_size
|
|
if spec_config is None:
|
|
return None
|
|
if spec_config.spec_dec_mode.is_ngram():
|
|
return NGramDrafter(spec_config,
|
|
NGramPoolManager(spec_config, max_num_requests))
|
|
if spec_config.spec_dec_mode.is_user_provided():
|
|
return spec_config.drafter
|
|
return None
|
|
|
|
|
|
def get_num_spec_layers(spec_config):
|
|
if spec_config.spec_dec_mode.is_mtp():
|
|
return spec_config.num_nextn_predict_layers
|
|
elif spec_config.spec_dec_mode.is_eagle3_one_model():
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
|
|
def get_spec_worker(spec_config, mapping):
|
|
if spec_config.spec_dec_mode.is_mtp():
|
|
return MTPWorker(spec_config)
|
|
elif spec_config.spec_dec_mode.is_mtp_eagle():
|
|
return MTPEagleWorker(spec_config)
|
|
elif spec_config.spec_dec_mode.is_eagle3_one_model():
|
|
return Eagle3OneModelWorker(spec_config, mapping)
|
|
else:
|
|
return None
|