TensorRT-LLMs/tensorrt_llm/lora_manager.py
Kaiyu Xie 5d8ca2faf7
Update TensorRT-LLM (#1639)
* Update TensorRT-LLM

---------

Co-authored-by: vonjackustc <fga@mail.ustc.edu.cn>
2024-05-21 17:51:02 +08:00

747 lines
30 KiB
Python

import json
import re
import tarfile
from collections import defaultdict
from dataclasses import dataclass, field
from pathlib import Path
from typing import Dict, List
import numpy as np
import torch
import yaml
from ._utils import (DictConversion, pad_vocab_size, release_gc,
str_dtype_to_torch, torch_to_numpy)
from .layers.linear import ColumnLinear
from .layers.moe import MoeConfig
from .logger import logger
from .mapping import Mapping
from .models.convert_utils import (get_model_path, load_state_dict,
split_matrix_tp)
def get_all_nemo_lora_weights(lora_weights):
layer_weights = defaultdict(dict)
adapter_key = "self_attention.adapter_layer.lora_kqv_adapter"
layer_pattern = re.compile(r'.*\.layers\.(\d+)\..*')
for key, weights in lora_weights.items():
if adapter_key in key:
if key.endswith('linear_in.weight'):
inout = 'in'
elif key.endswith('linear_out.weight'):
inout = 'out'
else:
continue
m = layer_pattern.match(key)
layer_idx = int(m.group(1))
layer_weights[layer_idx][inout] = weights
return layer_weights
def get_all_hf_lora_weights(lora_weights, hf_modules, component=None):
all_weights = defaultdict(lambda: defaultdict(dict))
pattern = re.compile(
r'(.*)\.(\d+)\.(\w+)\.(\w+|experts\.(\d+)\.(\w+))\.lora_(A|B)\.weight')
for key, weights in lora_weights.items():
m = pattern.match(key)
if not m:
if "lm_head" not in key and "embed_tokens" not in key:
logger.warning(f"no match {key} from HF LoRA weights")
continue
if component is not None and component not in m.group(1):
continue
layer_idx = int(m.group(2))
expert_idx = m.group(5)
is_moe = expert_idx is not None
module_name = m.group(6 if is_moe else 4)
hf_module = m.group(3) + "." + module_name
if hf_module not in hf_modules:
hf_module = module_name
assert hf_module in hf_modules
inout = "in" if m.group(7) == "A" else "out"
if not is_moe:
all_weights[layer_idx][hf_module][inout] = weights
else:
all_weights[layer_idx][hf_module].setdefault(expert_idx, {})
all_weights[layer_idx][hf_module][expert_idx][inout] = weights
return all_weights
def get_hf_target_modules(lora_weights, hf_modules, lora_target_modules):
hf_target_modules = set()
pattern = re.compile(
r'(.*)\.(\d+)\.(\w+)\.(\w+|experts\.(\d+)\.(\w+))\.lora_(A|B)\.weight')
for key in lora_weights.keys():
m = pattern.match(key)
if not m:
if "lm_head" not in key and "embed_tokens" not in key:
logger.warning(f"no match {key} from HF LoRA weights")
continue
match_target_module = False
for module in lora_target_modules:
if module in key:
match_target_module = True
break
if not match_target_module:
continue
expert_idx = m.group(5)
is_moe = expert_idx is not None
module_name = m.group(6 if is_moe else 4)
hf_module = m.group(3) + "." + module_name
if hf_module not in hf_modules:
hf_module = module_name
assert hf_module in hf_modules
hf_target_modules.add(hf_module)
return hf_target_modules
def invert_module_mapping(trtllm_modules_to_hf_modules):
hf_modules_to_trtllm_modules = {}
for k, hf_modules in trtllm_modules_to_hf_modules.items():
if isinstance(hf_modules, list):
for hf_module in hf_modules:
hf_modules_to_trtllm_modules[hf_module] = k
else:
hf_modules_to_trtllm_modules[hf_modules] = k
return hf_modules_to_trtllm_modules
@dataclass
class LoraConfig(DictConversion):
lora_dir: List[str] = field(default_factory=list)
lora_ckpt_source: str = 'hf'
max_lora_rank: int = 64
lora_target_modules: List[str] = field(default_factory=list)
trtllm_modules_to_hf_modules: Dict[str, str] = field(default_factory=dict)
def __post_init__(self):
assert self.lora_ckpt_source in [
'hf', 'nemo'
], f"lora_ckpt_source must be one of 'hf' or 'nemo', got {self.lora_ckpt_source}"
class HfLoraLoader:
def __init__(self, lora_dirs: List[str]):
self.lora_target_modules = []
self.is_valid = False
self.lm_head = None
self.embed_tokens = None
self.vocab_size = 0
if len(lora_dirs) == 0:
return
for lora_dir in lora_dirs:
model_path = get_model_path(lora_dir, "adapter_model")
if model_path is None:
raise ValueError(
f"adapter_model file does not exist in {lora_dir}")
config_file = Path(f"{lora_dir}/adapter_config.json")
if not config_file.exists():
raise ValueError(f"{config_file} does not exist")
if not config_file.is_file():
raise ValueError(f"{config_file} is not a file")
self.is_valid = True
lora_dir = lora_dirs[0]
with open(f"{lora_dir}/adapter_config.json") as f:
adapter_config = json.load(f)
self.lora_target_modules = adapter_config["target_modules"]
lora_weight = load_state_dict(get_model_path(lora_dir, "adapter_model"))
self.lora_weight = lora_weight
if adapter_config["modules_to_save"] is not None:
if "lm_head" in adapter_config["modules_to_save"]:
self.lm_head = lora_weight["base_model.model.lm_head.weight"]
self.vocab_size = self.lm_head.shape[0]
if "embed_tokens" in adapter_config["modules_to_save"]:
self.embed_tokens = lora_weight[
"base_model.model.model.embed_tokens.weight"]
def get_target_modules(self, trtllm_modules_to_hf_modules):
hf_modules_to_trtllm_modules = invert_module_mapping(
trtllm_modules_to_hf_modules)
lora_target_modules = []
if self.is_valid:
hf_target_modules = get_hf_target_modules(
self.lora_weight,
hf_modules=set(hf_modules_to_trtllm_modules.keys()),
lora_target_modules=self.lora_target_modules,
)
for m in hf_target_modules:
trtllm_module = hf_modules_to_trtllm_modules[m]
lora_target_modules.append(trtllm_module)
return lora_target_modules
class NemoLoraLoader:
def __init__(self, lora_dirs: List[str]):
self.lora_target_modules = []
self.is_valid = False
if len(lora_dirs) == 0:
return
for lora_file in lora_dirs:
path = Path(lora_file)
if not path.exists():
raise ValueError(f"{path} does not exist")
if not path.is_file():
raise ValueError(f"{path} is not a file")
self.is_valid = True
# Hardcoded since LoraManager only supports this case now
self.lora_target_modules = ["attn_qkv"]
def load_nemo_lora(model, lora_config: LoraConfig):
lora_loader = NemoLoraLoader(lora_config.lora_dir)
if len(lora_config.lora_target_modules) == 0:
lora_config.lora_target_modules = lora_loader.lora_target_modules
def get_default_trtllm_modules_to_hf_modules():
return {
"attn_q": "q_proj",
"attn_k": "k_proj",
"attn_v": "v_proj",
"attn_dense": "o_proj",
"mlp_h_to_4h": "gate_proj",
"mlp_4h_to_h": "down_proj",
"mlp_gate": "up_proj",
"moe_h_to_4h": "w1",
"moe_4h_to_h": "w2",
"moe_gate": "w3",
"moe_router": "gate",
}
def load_hf_lora(
model,
lora_config: LoraConfig,
trtllm_modules_to_hf_modules: Dict[str, str] = None,
):
trtllm_modules_to_hf_modules = trtllm_modules_to_hf_modules or get_default_trtllm_modules_to_hf_modules(
)
lora_config.trtllm_modules_to_hf_modules = trtllm_modules_to_hf_modules
lora_loader = HfLoraLoader(lora_config.lora_dir)
if len(lora_config.lora_target_modules) == 0:
lora_config.lora_target_modules = lora_loader.get_target_modules(
trtllm_modules_to_hf_modules)
if lora_loader.is_valid:
config = model.config
torch_dtype = str_dtype_to_torch(config.dtype)
# the lora checkpoint might finetune the embedding
if lora_loader.vocab_size != 0:
config.vocab_size = lora_loader.vocab_size
mapping = config.mapping
if mapping.is_first_pp_rank() and lora_loader.embed_tokens is not None:
weight = lora_loader.embed_tokens
if config.use_parallel_embedding:
weight = split_matrix_tp(
weight,
mapping.tp_size,
mapping.tp_rank,
dim=config.embedding_sharding_dim,
)
if model.transformer.vocab_embedding.weight.raw_value.shape != weight.shape:
model.transformer.vocab_embedding = model.transformer.vocab_embedding.__class__(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
dtype=config.dtype,
tp_size=mapping.tp_size
if config.use_parallel_embedding else 1,
tp_group=mapping.tp_group
if config.use_parallel_embedding else None,
sharding_dim=config.embedding_sharding_dim,
tp_rank=mapping.tp_rank,
)
model.transformer.vocab_embedding.weight.value = weight.to(
torch_dtype)
if mapping.is_last_pp_rank() and lora_loader.lm_head is not None:
weight = lora_loader.lm_head
vocab_size = lora_loader.vocab_size
if vocab_size % mapping.tp_size != 0:
# padding
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
pad_width = vocab_size_padded - vocab_size
weight = torch.from_numpy(
np.pad(torch_to_numpy(weight), ((0, pad_width), (0, 0)),
'constant',
constant_values=0))
else:
vocab_size_padded = vocab_size
if model.lm_head.weight.raw_value.shape != weight.shape:
model.lm_head = ColumnLinear(
config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True,
)
model.lm_head.weight.value = split_matrix_tp(
weight,
mapping.tp_size,
mapping.tp_rank,
dim=0,
).to(torch_dtype)
def use_lora(
model,
lora_config: LoraConfig,
trtllm_modules_to_hf_modules: Dict[str, str] = None,
):
if lora_config.lora_ckpt_source == "nemo":
load_nemo_lora(model, lora_config)
elif lora_config.lora_ckpt_source == "hf":
load_hf_lora(model, lora_config, trtllm_modules_to_hf_modules)
else:
raise ValueError(
f"Unsupported lora_ckpt_source: {lora_config.lora_ckpt_source}")
def unpack_nemo_weights(nemo_archive_path):
with tarfile.open(nemo_archive_path) as tar:
try:
model_weights = tar.extractfile("model_weights.ckpt")
model_config = tar.extractfile("model_config.yaml")
except KeyError:
try:
model_weights = tar.extractfile("./model_weights.ckpt")
model_config = tar.extractfile("./model_config.yaml")
except KeyError:
err_str = "Both model_weights paths not found in the tar archive."
raise Exception(err_str)
return yaml.safe_load(model_config), torch.load(
model_weights, map_location=torch.device("cpu"))
class LoraManager(object):
LORA_MODULE_IDS = {
"attn_qkv": 0,
"attn_q": 1,
"attn_k": 2,
"attn_v": 3,
"attn_dense": 4,
"mlp_h_to_4h": 5,
"mlp_4h_to_h": 6,
"mlp_gate": 7,
"cross_attn_qkv": 8,
"cross_attn_q": 9,
"cross_attn_k": 10,
"cross_attn_v": 11,
"cross_attn_dense": 12,
"moe_h_to_4h": 13,
"moe_4h_to_h": 14,
"moe_gate": 15,
"moe_router": 16,
}
def __init__(self):
'''
_lora_uid_to_low_ranks: dict[str -> dict[int -> dict[str -> int]]]
{
uid: {
0: {
lora_module: int
}, # layer_0_rank,
1: {
lora_module: int
}, # layer_1_rank,
...
}
}
_lora_weights_pointers_list: dict[str -> dict[int -> dict[str -> [Tensor, Tensor]]]]
{
uid: {
0: {
lora_module: [t_in, t_out]
}, # layer_0,
1: {
lora_module: [t_in, t_out]
}, # layer_1,
...
}
}
'''
self._lora_uid_to_low_ranks = {}
self._lora_weights = []
self._lora_weights_pointers_list = {}
self._lora_cpp_weights = {}
self._lora_weight_config = {}
self.missing_qkv_modules = []
self.lora_target_modules = []
@staticmethod
def get_missing_qkv_modules(lora_target_modules):
# In current design, q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time.
# However, some lora checkpoint (e.g. BART) only contain two of them, so we use zero tensor to fill the missing ones.
missing_qkv_modules = []
if any(x in lora_target_modules
for x in ["attn_q", "attn_k", "attn_v"]):
for lora_module in ["attn_q", "attn_k", "attn_v"]:
if lora_module not in lora_target_modules:
missing_qkv_modules.append(lora_module)
if any(x in lora_target_modules
for x in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]):
for lora_module in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]:
if lora_module not in lora_target_modules:
missing_qkv_modules.append(lora_module)
return missing_qkv_modules
def load_from_ckpt(self, model_dir, model_config, runtime_mapping,
ckpt_source):
if ckpt_source == "hf":
self.load_from_hf(model_dir, model_config, runtime_mapping)
elif ckpt_source == "nemo":
self.load_from_nemo(model_dir, model_config, runtime_mapping)
else:
assert False, f"LoraManager does not support source {ckpt_source}"
def load_from_nemo(self, model_files, model_config, runtime_mapping):
tp_size = runtime_mapping.tp_size
tp_rank = runtime_mapping.tp_rank
lora_target_modules = model_config.lora_target_modules
dtype = model_config.dtype
uids = list(map(str, range(len(model_files))))
self.lora_target_modules = lora_target_modules
self.missing_qkv_modules = self.get_missing_qkv_modules(
lora_target_modules)
def load_from_model_file(uid, model_file):
if uid not in self._lora_cpp_weights:
self._lora_cpp_weights[uid] = []
if uid not in self._lora_weight_config:
self._lora_weight_config[uid] = []
_, nemo_weights = unpack_nemo_weights(model_file)
all_lora_weights = get_all_nemo_lora_weights(nemo_weights)
self._lora_uid_to_low_ranks[uid] = {}
self._lora_weights_pointers_list[uid] = {}
for layer_idx in sorted(all_lora_weights.keys()):
self._lora_uid_to_low_ranks[uid][layer_idx] = {}
self._lora_weights_pointers_list[uid][layer_idx] = {}
for lora_module in lora_target_modules:
if lora_module != "attn_qkv":
self._lora_uid_to_low_ranks[uid][layer_idx][
lora_module] = 0
continue
if lora_module == "attn_qkv":
t_in = all_lora_weights[layer_idx]["in"]
t_out = all_lora_weights[layer_idx]["out"]
assert t_out.shape[0] % tp_size == 0
t_out = torch.split(t_out,
t_out.shape[0] // tp_size,
dim=0)[tp_rank].contiguous()
else:
t_in = None
t_out = None
if t_in is not None and t_out is not None:
t_in = t_in.cuda().to(
str_dtype_to_torch(dtype)).contiguous()
t_out = t_out.cuda().to(
str_dtype_to_torch(dtype)).contiguous()
rank = t_in.shape[0]
self._lora_uid_to_low_ranks[uid][layer_idx][
lora_module] = int(rank)
self._lora_weights_pointers_list[uid][layer_idx][
lora_module] = [t_in.data_ptr(),
t_out.data_ptr()]
# prevent torch free this buffer
self._lora_weights.append(t_in)
self._lora_weights.append(t_out)
self._lora_cpp_weights[uid].append(
torch.concatenate([t_in.flatten(),
t_out.flatten()]))
self._lora_weight_config[uid].append(
np.array([
self.LORA_MODULE_IDS[lora_module], layer_idx,
int(rank)
],
dtype=np.int32))
for uid, model_file in zip(uids, model_files):
load_from_model_file(uid, model_file)
release_gc()
def load_from_hf(self,
model_dirs,
model_config,
runtime_mapping,
component=None):
'''
lora config of https://huggingface.co/hfl/chinese-alpaca-2-lora-7b
{
"base_model_name_or_path": "/Llama-2-7b-hf",
"bias": "none",
"enable_lora": null,
"fan_in_fan_out": false,
"inference_mode": true,
"lora_alpha": 128.0,
"lora_dropout": 0.05,
"merge_weights": false,
"modules_to_save": [
"embed_tokens",
"lm_head"
],
"peft_type": "LORA",
"r": 64,
"target_modules": [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"gate_proj",
"down_proj",
"up_proj"
],
"task_type": "CAUSAL_LM"
}
keys in adapter_model.bin:
base_model.model.model.layers.0.self_attn.q_proj.lora_A.weight torch.Size([64, 4096])
base_model.model.model.layers.0.self_attn.q_proj.lora_B.weight torch.Size([4096, 64])
base_model.model.model.layers.0.self_attn.k_proj.lora_A.weight torch.Size([64, 4096])
base_model.model.model.layers.0.self_attn.k_proj.lora_B.weight torch.Size([4096, 64])
base_model.model.model.layers.0.self_attn.v_proj.lora_A.weight torch.Size([64, 4096])
base_model.model.model.layers.0.self_attn.v_proj.lora_B.weight torch.Size([4096, 64])
base_model.model.model.layers.0.self_attn.o_proj.lora_A.weight torch.Size([64, 4096])
base_model.model.model.layers.0.self_attn.o_proj.lora_B.weight torch.Size([4096, 64])
base_model.model.model.layers.0.mlp.gate_proj.lora_A.weight torch.Size([64, 4096])
base_model.model.model.layers.0.mlp.gate_proj.lora_B.weight torch.Size([11008, 64])
base_model.model.model.layers.0.mlp.up_proj.lora_A.weight torch.Size([64, 4096])
base_model.model.model.layers.0.mlp.up_proj.lora_B.weight torch.Size([11008, 64])
base_model.model.model.layers.0.mlp.down_proj.lora_A.weight torch.Size([64, 11008])
base_model.model.model.layers.0.mlp.down_proj.lora_B.weight torch.Size([4096, 64])
...
'''
tp_size = runtime_mapping.tp_size
tp_rank = runtime_mapping.tp_rank
lora_hf_configs = []
uids = []
for i, model_dir in enumerate(model_dirs):
with open(f"{model_dir}/adapter_config.json", 'r') as f:
config = json.load(f)
lora_hf_configs.append(config)
uids.append(str(i))
lora_target_modules = model_config.lora_target_modules
dtype = model_config.dtype
moe_tp_mode = model_config.moe_tp_mode
hf_modules_to_trtllm_modules = invert_module_mapping(
model_config.trtllm_modules_to_hf_modules)
hf_modules = set(hf_modules_to_trtllm_modules.keys())
missing_qkv_modules = self.get_missing_qkv_modules(lora_target_modules)
self.lora_target_modules = lora_target_modules
self.missing_qkv_modules = missing_qkv_modules
def load_from_model_dir(uid, model_dir, hf_config):
if uid not in self._lora_cpp_weights:
self._lora_cpp_weights[uid] = []
if uid not in self._lora_weight_config:
self._lora_weight_config[uid] = []
lora_model = load_state_dict(
get_model_path(model_dir, "adapter_model"))
all_weights = get_all_hf_lora_weights(lora_model, hf_modules,
component)
rank = int(hf_config["r"])
self._lora_uid_to_low_ranks[uid] = {}
self._lora_weights_pointers_list[uid] = {}
for layer_idx in sorted(all_weights.keys()):
layer_weights = all_weights[layer_idx]
self._lora_uid_to_low_ranks[uid][layer_idx] = {}
self._lora_weights_pointers_list[uid][layer_idx] = {}
for lora_module in missing_qkv_modules:
hf_module = model_config.trtllm_modules_to_hf_modules[
lora_module]
if isinstance(hf_module, list):
hf_module = hf_module[0]
layer_weights[hf_module] = {
"in": torch.zeros(rank, model_config.hidden_size),
"out": torch.zeros(model_config.hidden_size, rank),
}
for hf_module, module_weights in layer_weights.items():
lora_module = hf_modules_to_trtllm_modules[hf_module]
if lora_module not in lora_target_modules:
self._lora_uid_to_low_ranks[uid][layer_idx][
lora_module] = 0
continue
if "in" not in module_weights:
is_moe = True
t_in = torch.stack([
module_weights[expert_idx]["in"]
for expert_idx in sorted(module_weights.keys())
])
t_out = torch.stack([
module_weights[expert_idx]["out"]
for expert_idx in sorted(module_weights.keys())
])
else:
is_moe = False
t_in = module_weights["in"]
t_out = module_weights["out"]
if lora_module in ["moe_router"]:
pass
elif "moe" in lora_module and moe_tp_mode == MoeConfig.ParallelismMode.EXPERT_PARALLEL:
pass
elif lora_module in [
"attn_dense",
"cross_attn_dense",
"mlp_4h_to_h",
"moe_4h_to_h",
]:
# split by row
dim = 2 if is_moe else 1
assert t_in.shape[dim] % tp_size == 0
t_in = torch.split(t_in,
t_in.shape[dim] // tp_size,
dim=dim)[tp_rank].contiguous()
else:
# split by column
dim = 1 if is_moe else 0
assert t_out.shape[dim] % tp_size == 0
t_out = torch.split(t_out,
t_out.shape[dim] // tp_size,
dim=dim)[tp_rank].contiguous()
t_in = t_in.cuda().contiguous()
t_out = t_out.cuda().contiguous()
scale = float(hf_config["lora_alpha"]) / rank
t_out = t_out * scale
t_in = t_in.to(str_dtype_to_torch(dtype))
t_out = t_out.to(str_dtype_to_torch(dtype))
rank_dim = 1 if is_moe else 0
assert t_in.shape[rank_dim] == rank
self._lora_uid_to_low_ranks[uid][layer_idx][
lora_module] = rank
self._lora_weights_pointers_list[uid][layer_idx][
lora_module] = [t_in.data_ptr(),
t_out.data_ptr()]
# prevent torch free this buffer
self._lora_weights.append(t_in)
self._lora_weights.append(t_out)
self._lora_cpp_weights[uid].append(
torch.concatenate([t_in.flatten(),
t_out.flatten()]))
self._lora_weight_config[uid].append(
np.array([
self.LORA_MODULE_IDS[lora_module], layer_idx,
int(hf_config['r'])
],
dtype=np.int32))
for uid, model_dir, hf_config in zip(uids, model_dirs, lora_hf_configs):
load_from_model_dir(uid, model_dir, hf_config)
release_gc()
def save_lora_weights_to_bin(self, out_dir):
def save_val(val, dir, key, tp_num=None, write_npy=False):
ext = "npy" if write_npy else "bin"
suffix = ext if tp_num is None else f"{tp_num}.{ext}"
if write_npy:
np.save(dir / f"model.{key}.{suffix}", val)
else:
val.tofile(dir / f"model.{key}.{suffix}")
if isinstance(out_dir, str):
out_dir_path = Path(out_dir)
elif isinstance(out_dir, Path):
out_dir_path = out_dir
else:
assert False
for uid in self._lora_cpp_weights:
if uid == '-1':
continue
all_weights = np.expand_dims(
np.stack([
torch_to_numpy(w.flatten().contiguous())
for w in self._lora_cpp_weights[uid]
]), 0)
all_configs = np.expand_dims(
np.stack(self._lora_weight_config[uid]), 0)
uid_path = out_dir_path / f"{uid}"
uid_path.mkdir(parents=True, exist_ok=True)
save_val(all_weights,
uid_path,
"lora_weights",
tp_num=None,
write_npy=True)
save_val(all_configs,
uid_path,
"lora_config",
tp_num=None,
write_npy=True)
def uid_to_low_ranks(self, uid: str):
assert isinstance(uid, str)
return self._lora_uid_to_low_ranks[uid]
@property
def lora_weights(self):
return self._lora_weights
@property
def lora_weights_pointers_list(self):
return self._lora_weights_pointers_list
def input_buffers(self, lora_uids, mapping: Mapping, num_layers: int):
inputs = {}
for layer_idx in mapping.pp_layers(num_layers):
for lora_module in (self.lora_target_modules +
self.missing_qkv_modules):
lora_ranks_ = []
lora_ptrs_ = []
for lora_uid in lora_uids:
lora_rank = 0
lora_ptrs = [0, 0]
if lora_uid != "-1":
low_ranks = self.uid_to_low_ranks(lora_uid)
if (layer_idx in low_ranks
and lora_module in low_ranks[layer_idx].keys()
and low_ranks[layer_idx][lora_module] != 0):
lora_rank = low_ranks[layer_idx][lora_module]
lora_ptrs = self.lora_weights_pointers_list[
lora_uid][layer_idx][lora_module]
lora_ranks_.append(lora_rank)
lora_ptrs_.append(lora_ptrs)
inputs[
f'{lora_module}_lora_ranks_{layer_idx}'] = torch.IntTensor(
lora_ranks_)
inputs[
f'{lora_module}_lora_weights_pointers_{layer_idx}'] = torch.LongTensor(
lora_ptrs_)
return inputs