TensorRT-LLMs/tests/functional/test_scatter.py
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

115 lines
4.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from parameterized import parameterized
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
(
[
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
[
[1, 0, 2],
[0, 2, 1],
],
[[1.0, 1.1, 1.2], [2.0, 2.1, 2.2]],
0,
),
([[1, 2, 3], [4, 5, 6]], [[1, 2], [0, 1]], [[-1, -2], [-3, -4]], 1),
(
[[[-3.0, -2.0, -1.0, 10.0, -25.0]], [[0.0, 1.0, 2.0, -2.0, -1.0]]],
[[[1, 2, 3, 0, 4]], [[4, 1, 2, 3, 0]]],
[[[-1.0, 2.4, 3.2, 10.8, 8.9]], [[0, -11.2, 34.2, 223.9, -100]]],
2,
),
])
def test_scatter(self,
input_data=[[[-3.0, -2.0, -1.0, 10.0, -25.0]],
[[0.0, 1.0, 2.0, -2.0, -1.0]]],
indices=[[[1, 2, 3, 0, 4]], [[4, 1, 2, 3, 0]]],
updates=[[[-1.0, 2.4, 3.2, 10.8, 8.9]],
[[0, -11.2, 34.2, 223.9, -100]]],
dim=2):
dtype = 'float32'
torch_dtype = str_dtype_to_torch(dtype)
input_data = input_data if isinstance(
input_data, torch.Tensor) else torch.tensor(input_data)
indices = indices if isinstance(
indices, torch.Tensor) else torch.tensor(indices).int()
updates = updates if isinstance(updates,
torch.Tensor) else torch.tensor(updates)
input_data = input_data.to(torch_dtype)
updates = updates.to(torch_dtype)
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input_t = Tensor(name='input',
shape=input_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
indices_t = Tensor(name='indices',
shape=indices.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
updates_t = Tensor(name='updates',
shape=updates.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.scatter(input_t,
dim=dim,
indices=indices_t,
updates=updates_t)
output = output.trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(
feed_dict={
'input': input_data.numpy(),
'indices': indices.numpy(),
'updates': updates.numpy(),
})
ref = torch.scatter(input_data,
dim=dim,
index=indices.to(dtype=torch.int64),
src=updates)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
# print(ref)
# print(outputs['output'])
return