mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-31 08:11:27 +08:00
update docs for 0.20.0rc2 Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
696 lines
38 KiB
HTML
696 lines
38 KiB
HTML
|
||
|
||
<!DOCTYPE html>
|
||
|
||
|
||
<html lang="en" data-content_root="../../" >
|
||
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
||
|
||
<title>Deciding Model Sharding Strategy — TensorRT-LLM</title>
|
||
|
||
|
||
|
||
<script data-cfasync="false">
|
||
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
|
||
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
|
||
</script>
|
||
<!--
|
||
this give us a css class that will be invisible only if js is disabled
|
||
-->
|
||
<noscript>
|
||
<style>
|
||
.pst-js-only { display: none !important; }
|
||
|
||
</style>
|
||
</noscript>
|
||
|
||
<!-- Loaded before other Sphinx assets -->
|
||
<link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
||
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
||
|
||
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" />
|
||
<link rel="stylesheet" type="text/css" href="../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
|
||
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
|
||
<link rel="stylesheet" type="text/css" href="../../_static/autodoc_pydantic.css" />
|
||
|
||
<!-- So that users can add custom icons -->
|
||
<script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
|
||
<!-- Pre-loaded scripts that we'll load fully later -->
|
||
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
|
||
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
|
||
|
||
<script src="../../_static/documentation_options.js?v=5929fcd5"></script>
|
||
<script src="../../_static/doctools.js?v=9a2dae69"></script>
|
||
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
|
||
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
|
||
<script src="../../_static/copybutton.js?v=65e89d2a"></script>
|
||
<script>DOCUMENTATION_OPTIONS.pagename = 'performance/performance-tuning-guide/deciding-model-sharding-strategy';</script>
|
||
<script>
|
||
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
|
||
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
|
||
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '0.20.0rc2';
|
||
DOCUMENTATION_OPTIONS.show_version_warning_banner =
|
||
false;
|
||
</script>
|
||
<link rel="icon" href="../../_static/favicon.png"/>
|
||
<link rel="index" title="Index" href="../../genindex.html" />
|
||
<link rel="search" title="Search" href="../../search.html" />
|
||
<link rel="next" title="FP8 Quantization" href="fp8-quantization.html" />
|
||
<link rel="prev" title="Tuning Max Batch Size and Max Num Tokens" href="tuning-max-batch-size-and-max-num-tokens.html" />
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
||
<meta name="docsearch:language" content="en"/>
|
||
<meta name="docsearch:version" content="0.20.0rc2" />
|
||
|
||
|
||
</head>
|
||
|
||
|
||
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
|
||
|
||
|
||
|
||
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
|
||
|
||
<div id="pst-scroll-pixel-helper"></div>
|
||
|
||
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
|
||
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
|
||
|
||
|
||
<dialog id="pst-search-dialog">
|
||
|
||
<form class="bd-search d-flex align-items-center"
|
||
action="../../search.html"
|
||
method="get">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<input type="search"
|
||
class="form-control"
|
||
name="q"
|
||
placeholder="Search the docs ..."
|
||
aria-label="Search the docs ..."
|
||
autocomplete="off"
|
||
autocorrect="off"
|
||
autocapitalize="off"
|
||
spellcheck="false"/>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
|
||
</form>
|
||
</dialog>
|
||
|
||
<div class="pst-async-banner-revealer d-none">
|
||
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
|
||
</div>
|
||
|
||
|
||
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
|
||
<div class="bd-header__inner bd-page-width">
|
||
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
|
||
<span class="fa-solid fa-bars"></span>
|
||
</button>
|
||
|
||
|
||
<div class="col-lg-3 navbar-header-items__start">
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
|
||
|
||
|
||
<a class="navbar-brand logo" href="../../index.html">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<img src="../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
|
||
<img src="../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
|
||
|
||
|
||
<p class="title logo__title">TensorRT-LLM</p>
|
||
|
||
</a></div>
|
||
|
||
</div>
|
||
|
||
<div class="col-lg-9 navbar-header-items">
|
||
|
||
<div class="me-auto navbar-header-items__center">
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
<div class="version-switcher__container dropdown pst-js-only">
|
||
<button id="pst-version-switcher-button-2"
|
||
type="button"
|
||
class="version-switcher__button btn btn-sm dropdown-toggle"
|
||
data-bs-toggle="dropdown"
|
||
aria-haspopup="listbox"
|
||
aria-controls="pst-version-switcher-list-2"
|
||
aria-label="Version switcher list"
|
||
>
|
||
Choose version <!-- this text may get changed later by javascript -->
|
||
<span class="caret"></span>
|
||
</button>
|
||
<div id="pst-version-switcher-list-2"
|
||
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
||
role="listbox" aria-labelledby="pst-version-switcher-button-2">
|
||
<!-- dropdown will be populated by javascript on page load -->
|
||
</div>
|
||
</div></div>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="navbar-header-items__end">
|
||
|
||
<div class="navbar-item navbar-persistent--container">
|
||
|
||
|
||
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<span class="search-button__default-text">Search</span>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
||
</button>
|
||
</div>
|
||
|
||
|
||
<div class="navbar-item">
|
||
|
||
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
||
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
||
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
||
</button></div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="navbar-persistent--mobile">
|
||
|
||
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<span class="search-button__default-text">Search</span>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
||
</button>
|
||
</div>
|
||
|
||
|
||
|
||
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
|
||
<span class="fa-solid fa-outdent"></span>
|
||
</button>
|
||
|
||
</div>
|
||
|
||
</header>
|
||
|
||
|
||
<div class="bd-container">
|
||
<div class="bd-container__inner bd-page-width">
|
||
|
||
|
||
|
||
<dialog id="pst-primary-sidebar-modal"></dialog>
|
||
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a class="navbar-brand logo" href="../../index.html">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<img src="../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
|
||
<img src="../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
|
||
|
||
|
||
<p class="title logo__title">TensorRT-LLM</p>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
<div class="sidebar-header-items sidebar-primary__section">
|
||
|
||
|
||
<div class="sidebar-header-items__center">
|
||
|
||
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
<div class="version-switcher__container dropdown pst-js-only">
|
||
<button id="pst-version-switcher-button-3"
|
||
type="button"
|
||
class="version-switcher__button btn btn-sm dropdown-toggle"
|
||
data-bs-toggle="dropdown"
|
||
aria-haspopup="listbox"
|
||
aria-controls="pst-version-switcher-list-3"
|
||
aria-label="Version switcher list"
|
||
>
|
||
Choose version <!-- this text may get changed later by javascript -->
|
||
<span class="caret"></span>
|
||
</button>
|
||
<div id="pst-version-switcher-list-3"
|
||
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
||
role="listbox" aria-labelledby="pst-version-switcher-button-3">
|
||
<!-- dropdown will be populated by javascript on page load -->
|
||
</div>
|
||
</div></div>
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-header-items__end">
|
||
|
||
<div class="navbar-item">
|
||
|
||
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
||
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
||
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
||
</button></div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div class="sidebar-primary-items__start sidebar-primary__section">
|
||
<div class="sidebar-primary-item">
|
||
|
||
|
||
|
||
<nav class="bd-docs-nav bd-links"
|
||
aria-label="Table of Contents">
|
||
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
|
||
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../overview.html">Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../quick-start-guide.html">Quick Start Guide</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../key-features.html">Key Features</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../torch.html">PyTorch Backend</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../release-notes.html">Release Notes</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../installation/linux.html">Installing on Linux</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../llm-api/index.html">API Introduction</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../llm-api/reference.html">API Reference</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_kv_events.html">Get KV Cache Events</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_customize.html">Generate text with customization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_quantization.html">Generation with Quantization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference.html">Generate text</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_eagle_decoding.html">Generate Text Using Eagle Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_llm_distributed.html">Llm Mgmn Llm Distributed</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_bench.html">Llm Mgmn Trtllm Bench</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_serve.html">Llm Mgmn Trtllm Serve</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../examples/customization.html">LLM Common Customizations</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_kv_events.html">Get KV Cache Events</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_customize.html">Generate text with customization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_quantization.html">Generation with Quantization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference.html">Generate text</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_eagle_decoding.html">Generate Text Using Eagle Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_llm_distributed.html">Llm Mgmn Llm Distributed</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_bench.html">Llm Mgmn Trtllm Bench</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_serve.html">Llm Mgmn Trtllm Serve</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_chat_client.html">Curl Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_completion_client.html">Curl Completion Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/genai_perf_client.html">Genai Perf Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.layers.html">Layers</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.models.html">Models</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../_cpp_gen/executor.html">Executor</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../_cpp_gen/runtime.html">Runtime</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../commands/trtllm-build.html">trtllm-build</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../commands/trtllm-serve.html">trtllm-serve</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../architecture/core-concepts.html">Model Definition</a></li>
|
||
|
||
|
||
|
||
<li class="toctree-l1"><a class="reference internal" href="../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../architecture/add-model.html">Adding a Model</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/executor.html">Executor API</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/lora.html">Run gpt-2b + LoRA using Executor / cpp runtime</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
|
||
<ul class="current nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../perf-overview.html">Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../perf-benchmarking.html">Benchmarking</a></li>
|
||
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">Performance Tuning Guide</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
|
||
<li class="toctree-l2"><a class="reference internal" href="benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="useful-build-time-flags.html">Useful Build-Time Flags</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
|
||
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Deciding Model Sharding Strategy</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="fp8-quantization.html">FP8 Quantization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="useful-runtime-flags.html">Useful Runtime Options</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../perf-analysis.html">Performance Analysis</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../reference/troubleshooting.html">Troubleshooting</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../reference/support-matrix.html">Support Matrix</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../reference/precision.html">Numerical Precision</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
||
</ul>
|
||
</div>
|
||
</nav></div>
|
||
</div>
|
||
|
||
|
||
<div class="sidebar-primary-items__end sidebar-primary__section">
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
<main id="main-content" class="bd-main" role="main">
|
||
|
||
|
||
<div class="bd-content">
|
||
<div class="bd-article-container">
|
||
|
||
<div class="bd-header-article d-print-none">
|
||
<div class="header-article-items header-article__inner">
|
||
|
||
<div class="header-article-items__start">
|
||
|
||
<div class="header-article-item">
|
||
|
||
<nav aria-label="Breadcrumb" class="d-print-none">
|
||
<ul class="bd-breadcrumbs">
|
||
|
||
<li class="breadcrumb-item breadcrumb-home">
|
||
<a href="../../index.html" class="nav-link" aria-label="Home">
|
||
<i class="fa-solid fa-home"></i>
|
||
</a>
|
||
</li>
|
||
|
||
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Performance Tuning Guide</a></li>
|
||
|
||
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Deciding Model Sharding Strategy</span></li>
|
||
</ul>
|
||
</nav>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
|
||
<div id="searchbox"></div>
|
||
<article class="bd-article">
|
||
|
||
<section id="deciding-model-sharding-strategy">
|
||
<span id="id1"></span><h1>Deciding Model Sharding Strategy<a class="headerlink" href="#deciding-model-sharding-strategy" title="Link to this heading">#</a></h1>
|
||
<p>Large models often can’t fit on one GPU and need to be sharded across multiple GPUs. The sharding strategies used to accomplish this can have significant impacts on performance. This guide walks through how to determine if tensor parallelism, pipeline parallelism, or a mix of both are the best strategy for you. If you are not familiar with tensor parallelism and pipeline parallelism please refer to <a class="reference external" href="https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/">Mastering LLM Techniques - Inference Optimization</a></p>
|
||
<section id="how-to-think-about-model-sharding-communication-is-key">
|
||
<h2>How to Think about Model Sharding: Communication is Key<a class="headerlink" href="#how-to-think-about-model-sharding-communication-is-key" title="Link to this heading">#</a></h2>
|
||
<p>Splitting your model weights between multiple GPUs requires them to communicate activations between each other, adding additional overhead. How expensive this overhead is on your system is the key factor in determining the best strategy for you.</p>
|
||
<p>In pipeline parallelism, the model is split into sets of contiguous layers and each GPU houses one of these sets. In this setup, the only required communication is for each GPU to send the outputs of its set to the GPU with the next set.</p>
|
||
<p><img alt="Pipeline Parallel Visualization" src="../../_images/Pipeline_Parallel_Vis.svg" /></p>
|
||
<p>On the other hand, tensor parallelism takes each layer of the model and splits it between the GPUs. This means that every GPU houses a portion of every layer. However since each layer needs the full outputs of the previous layer as an input, each GPU has to perform the heavier All-Reduce communication operation to share its results with all other GPUs before it can begin processing the next layer. While this seems disadvantageous, because each GPU only holds partial layers, it also performs smaller matrix multiplications, allowing it to compute its outputs quicker.</p>
|
||
<p><img alt="Tensor Parallel Visualization" src="../../_images/Tensor_Parallelism_Vis.svg" /></p>
|
||
<p>Ultimately deciding the best strategy comes down to whether the extra overhead from the All-Reduce operation overshadows the gains from the smaller matrix multiplications. If the interconnects between the GPUs are sufficiently fast, the gains from the reduced computation burden per layer can outweigh the additional communication cost. Consequently, a general rule of thumb is that if your GPUs have fast connections between them like NVLink then tensor parallel is likely a good choice. However if the communication will go over slow connections (across nodes for example) pipeline parallel is likely better. Overall we provide the following guidelines:</p>
|
||
<p><strong>If your model fits on one gpu:</strong> Unless you have a very specific reason, don’t shard your model. The best communication overhead is no communication overhead.</p>
|
||
<p><strong>If your model fits in one node:</strong> Tensor parallel is likely the best option here, especially if you have fast connections between the GPUs like NVLink. If you don’t, then pipeline parallel might be needed. Start with tensor parallel and sanity check if pipeline parallel is better.</p>
|
||
<p><strong>If your model is sharded across multiple nodes:</strong> Inter-node connections are typically significantly slower than intra-node connections, so if you have tensor parallelism across nodes it will be bottlenecked by the slow interconects. Consequently, a good starting point is having tensor parallelism within the node and pipeline parallelism between nodes. An exception is if you are running on NVL36 or NVL72 Blackwell systems. These have multinode NVLink so as long as you stay within the 36 or 72 GPUs, tensor parallel won’t be bottlenecked by inter-node connections.</p>
|
||
</section>
|
||
<section id="how-to-set-tensor-parallelism-and-pipeline-parallelism">
|
||
<h2>How to set Tensor Parallelism and Pipeline Parallelism<a class="headerlink" href="#how-to-set-tensor-parallelism-and-pipeline-parallelism" title="Link to this heading">#</a></h2>
|
||
<p>The <code class="docutils literal notranslate"><span class="pre">LLM</span></code> class takes <code class="docutils literal notranslate"><span class="pre">tensor_parallel_size</span></code> and <code class="docutils literal notranslate"><span class="pre">pipeline_parallel_size</span></code> as parameters. <code class="docutils literal notranslate"><span class="pre">tensor_parallel_size</span> <span class="pre">*</span> <span class="pre">pipeline_parallel_size</span></code> should be equal to the total number of GPUs you are sharding the model over, referred to as the world size. For example, if you were sharding a model over 2 nodes, each with 16 GPUs, you might set tensor parallel to 8 (for tensor parallelism within the node) and pipeline parallel to 2 (pipeline parallel between nodes) like this:</p>
|
||
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
||
<span class="n">model</span><span class="o">=</span><span class="s2">"/scratch/Llama-3.1-405B-Instruct"</span><span class="p">,</span>
|
||
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
|
||
<span class="n">pipeline_parallel_size</span><span class="o">=</span><span class="mi">2</span>
|
||
<span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>If you are using the <a class="reference internal" href="benchmarking-default-performance.html#building-and-saving-engines-via-cli"><span class="std std-ref">CLI flow for building engines</span></a> you can specify tensor parallelism and pipeline parallelism by providing the <code class="docutils literal notranslate"><span class="pre">--tp_size</span></code> and <code class="docutils literal notranslate"><span class="pre">--tp_size</span></code> arguments to <code class="docutils literal notranslate"><span class="pre">convert_checkpoint.py</span></code></p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">python</span> <span class="n">examples</span><span class="o">/</span><span class="n">models</span><span class="o">/</span><span class="n">core</span><span class="o">/</span><span class="n">llama</span><span class="o">/</span><span class="n">convert_checkpoint</span><span class="o">.</span><span class="n">py</span> <span class="o">--</span><span class="n">model_dir</span> <span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">llama</span><span class="o">/</span><span class="mi">405</span><span class="n">B</span><span class="o">/</span> \
|
||
<span class="o">--</span><span class="n">output_dir</span> <span class="o">./</span><span class="n">tllm_checkpoint_16gpu_tp8_pp2</span> \
|
||
<span class="o">--</span><span class="n">dtype</span> <span class="n">float16</span> \
|
||
<span class="o">--</span><span class="n">tp_size</span> <span class="mi">8</span>
|
||
<span class="o">--</span><span class="n">pp_size</span> <span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
</section>
|
||
|
||
|
||
</article>
|
||
|
||
|
||
|
||
|
||
|
||
<footer class="prev-next-footer d-print-none">
|
||
|
||
<div class="prev-next-area">
|
||
<a class="left-prev"
|
||
href="tuning-max-batch-size-and-max-num-tokens.html"
|
||
title="previous page">
|
||
<i class="fa-solid fa-angle-left"></i>
|
||
<div class="prev-next-info">
|
||
<p class="prev-next-subtitle">previous</p>
|
||
<p class="prev-next-title">Tuning Max Batch Size and Max Num Tokens</p>
|
||
</div>
|
||
</a>
|
||
<a class="right-next"
|
||
href="fp8-quantization.html"
|
||
title="next page">
|
||
<div class="prev-next-info">
|
||
<p class="prev-next-subtitle">next</p>
|
||
<p class="prev-next-title">FP8 Quantization</p>
|
||
</div>
|
||
<i class="fa-solid fa-angle-right"></i>
|
||
</a>
|
||
</div>
|
||
</footer>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
|
||
<dialog id="pst-secondary-sidebar-modal"></dialog>
|
||
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
|
||
|
||
|
||
<div class="sidebar-secondary-item">
|
||
<div
|
||
id="pst-page-navigation-heading-2"
|
||
class="page-toc tocsection onthispage">
|
||
<i class="fa-solid fa-list"></i> On this page
|
||
</div>
|
||
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
|
||
<ul class="visible nav section-nav flex-column">
|
||
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#how-to-think-about-model-sharding-communication-is-key">How to Think about Model Sharding: Communication is Key</a></li>
|
||
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#how-to-set-tensor-parallelism-and-pipeline-parallelism">How to set Tensor Parallelism and Pipeline Parallelism</a></li>
|
||
</ul>
|
||
</nav></div>
|
||
|
||
</div></div>
|
||
|
||
|
||
|
||
</div>
|
||
<footer class="bd-footer-content">
|
||
|
||
</footer>
|
||
|
||
</main>
|
||
</div>
|
||
</div>
|
||
|
||
<!-- Scripts loaded after <body> so the DOM is not blocked -->
|
||
<script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
|
||
<script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
|
||
|
||
<footer class="bd-footer">
|
||
<div class="bd-footer__inner bd-page-width">
|
||
|
||
<div class="footer-items__start">
|
||
|
||
<div class="footer-item">
|
||
<a class="footer-brand logo" href="https://www.nvidia.com">
|
||
<img src="../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
|
||
<img src="../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
|
||
</a></div>
|
||
|
||
<div class="footer-item">
|
||
|
||
<div class="footer-links">
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
|
||
|
||
|
||
|
||
</div>
|
||
</div>
|
||
|
||
<div class="footer-item">
|
||
|
||
|
||
|
||
|
||
<p class="copyright">
|
||
|
||
Copyright © 2025, NVidia.
|
||
<br/>
|
||
|
||
</p>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</footer>
|
||
</body>
|
||
</html> |