TensorRT-LLMs/tensorrt_llm/bench/benchmark/throughput.py
Frank 788fc62d23
[None][fix] Update to pull LLM from a central location. (#6458)
Signed-off-by: Frank Di Natale <3429989+FrankD412@users.noreply.github.com>
2025-08-25 13:07:29 -07:00

483 lines
17 KiB
Python
Executable File

from __future__ import annotations
import asyncio
import sys
from functools import partial
from pathlib import Path
import click
from click_option_group import (MutuallyExclusiveOptionGroup, OptionGroup,
optgroup)
from huggingface_hub import snapshot_download
from tensorrt_llm.bench.benchmark import (GeneralExecSettings,
generate_json_report,
get_general_cli_options, get_llm)
from tensorrt_llm.bench.benchmark.utils.asynchronous import async_benchmark
from tensorrt_llm.tools.importlib_utils import import_custom_module_from_dir
# isort: off
from tensorrt_llm.bench.benchmark.utils.general import (
get_settings_from_engine, get_settings, ALL_SUPPORTED_BACKENDS)
# isort: on
from tensorrt_llm.bench.benchmark.utils.general import (
generate_warmup_dataset, update_sampler_args_with_extra_options)
from tensorrt_llm.bench.dataclasses.configuration import RuntimeConfig
from tensorrt_llm.bench.dataclasses.general import BenchmarkEnvironment
from tensorrt_llm.bench.dataclasses.reporting import ReportUtility
from tensorrt_llm.bench.utils.data import (create_dataset_from_stream,
initialize_tokenizer,
update_metadata_for_multimodal)
from tensorrt_llm.llmapi import CapacitySchedulerPolicy
from tensorrt_llm.logger import logger
from tensorrt_llm.sampling_params import SamplingParams
@click.command(name="throughput")
@optgroup.group("Engine run configuration.",
help="Runtime settings for executing a TensorRT-LLM engine.")
@optgroup.option(
"--engine_dir",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
help="Path to a serialized TRT-LLM engine.",
)
@optgroup.option("--backend",
type=click.Choice(ALL_SUPPORTED_BACKENDS),
default="pytorch",
help="The backend to use when running benchmarking.")
@optgroup.option(
"--custom_module_dirs",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
multiple=True,
help="Paths to custom module directories to import.",
)
@optgroup.option(
"--extra_llm_api_options",
type=str,
default=None,
help=
"Path to a YAML file that overwrites the parameters specified by trtllm-bench."
)
@optgroup.option("--sampler_options",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
help="Path to a YAML file that sets sampler options.")
@optgroup.option(
"--max_batch_size",
type=int,
help="Maximum runtime batch size to run the engine with.",
)
@optgroup.option(
"--max_num_tokens",
type=int,
help="Maximum runtime tokens that an engine can accept.",
)
@optgroup.option(
"--max_seq_len",
type=int,
default=None,
help="Maximum sequence length.",
)
@optgroup.option(
"--beam_width",
type=int,
default=1,
help="Number of search beams.",
)
@optgroup.option(
"--kv_cache_free_gpu_mem_fraction",
type=float,
default=.90,
help="The percentage of memory to use for KV Cache after model load.",
)
@optgroup.group(
"Engine Input Configuration",
help="Input configuration for driving the engine.",
)
@optgroup.option(
"--dataset",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
required=False,
help="Pass in a dataset file for parsing instead of stdin.",
)
# For text models, tokenizer initialization is not needed when loading the model since the dataset is already tokenized.
# For this reason, we skip tokenizer initialization by default.
# However, for VLM models, tokenizer initialization is needed inside the model since the dataset contains texts and
# raw media data. We cannot skip tokenizer initialization in this case.
@optgroup.option(
"--no_skip_tokenizer_init",
is_flag=True,
default=False,
help="Do not skip tokenizer initialization when loading the model.",
)
@optgroup.option(
"--eos_id",
type=int,
default=-1,
required=False,
help=
"Set the end-of-sequence token for the benchmark. Set to -1 to disable EOS.",
)
@optgroup.option(
"--modality",
type=click.Choice(["image", "video"]),
default=None,
help="Modality of the multimodal requests.",
)
@optgroup.option(
"--image_data_format",
type=click.Choice(["pt", "pil"]),
default="pt",
help="Format of the image data for multimodal models.",
)
@optgroup.option(
"--data_device",
type=click.Choice(["cuda", "cpu"]),
default="cuda",
help="Device to load the multimodal data on.",
)
@optgroup.option(
"--max_input_len",
type=int,
default=4096,
help=
"Maximum input sequence length to use for multimodal models. This is used only when --modality "
"is specified since the actual number of vision tokens is unknown before the model is run.",
)
@optgroup.option(
"--num_requests",
type=int,
default=0,
help=
"Number of requests to cap benchmark run at. If not specified or set to 0, it will be the "
"length of dataset.",
)
@optgroup.option(
"--warmup",
type=int,
default=2,
help="Number of requests warm up benchmark.",
)
@optgroup.option(
"--target_input_len",
default=None,
type=click.IntRange(min=1),
help="Target (average) input length for tuning heuristics.",
)
@optgroup.option(
"--target_output_len",
default=None,
type=click.IntRange(min=1),
help="Target (average) sequence length for tuning heuristics.",
)
@optgroup.group(
"World Configuration",
help="Options for configuring the backend multi-GPU world.",
)
@optgroup.option(
"--tp",
type=int,
default=1,
help="tensor parallelism size",
)
@optgroup.option(
"--pp",
type=int,
default=1,
help="pipeline parallelism size",
)
@optgroup.option(
"--ep",
type=int,
default=None,
help="expert parallelism size",
)
@optgroup.option(
"--cluster_size",
type=int,
default=None,
help="expert cluster parallelism size",
)
@optgroup.group("Request Load Control Options",
cls=MutuallyExclusiveOptionGroup,
help="Limits how requests are loaded.")
@optgroup.option(
"--concurrency",
type=int,
default=-1,
help=
"Desired concurrency rate (number of requests processing at the same time), <=0 for no concurrency limit.",
)
@click.option(
"--streaming",
is_flag=True,
default=False,
help="Enable streaming mode for requests.",
)
@optgroup.group("Reporting Options",
help="Options for reporting benchmark results.",
cls=OptionGroup)
@optgroup.option(
"--report_json",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where report is written to.",
)
@optgroup.option(
"--iteration_log",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where iteration logging is written to.",
)
@optgroup.option(
"--output_json",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where output should be written to.",
)
@optgroup.option(
"--request_json",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where per request information is written to.",
)
@optgroup.option(
"--enable_chunked_context/--disable_chunked_context",
default=True,
help=
"Enable/disable chunking in prefill stage for enhanced throughput benchmark. "
)
@optgroup.option(
"--scheduler_policy",
type=click.Choice(["guaranteed_no_evict", "max_utilization"]),
default="guaranteed_no_evict",
help=
"KV cache scheduler policy: guaranteed_no_evict prevents request eviction, max_utilization optimizes for throughput.",
)
@click.pass_obj
def throughput_command(
bench_env: BenchmarkEnvironment,
**params,
) -> None:
"""Run a throughput test on a TRT-LLM engine."""
logger.info("Preparing to run throughput benchmark...")
# Parameters from CLI
image_data_format: str = params.get("image_data_format", "pt")
data_device: str = params.get("data_device", "cpu")
no_skip_tokenizer_init: bool = params.get("no_skip_tokenizer_init", False)
# Get general CLI options using the centralized function
options: GeneralExecSettings = get_general_cli_options(params, bench_env)
tokenizer = initialize_tokenizer(options.checkpoint_path)
# Extract throughput-specific options not handled by GeneralExecSettings
max_batch_size = params.get("max_batch_size")
max_num_tokens = params.get("max_num_tokens")
enable_chunked_context: bool = params.get("enable_chunked_context")
scheduler_policy: str = params.get("scheduler_policy")
custom_module_dirs: list[Path] = params.pop("custom_module_dirs", [])
for custom_module_dir in custom_module_dirs:
try:
import_custom_module_from_dir(custom_module_dir)
except Exception as e:
logger.error(
f"Failed to import custom module from {custom_module_dir}: {e}")
raise e
# Runtime kwargs and option tracking.
kwargs = {}
# Dataset Loading and Preparation
with open(options.dataset_path, "r") as dataset:
metadata, requests = create_dataset_from_stream(
tokenizer,
dataset,
num_requests=options.num_requests,
model_dir=options.checkpoint_path,
model_type=options.model_type,
modality=options.modality,
image_data_format=image_data_format,
data_device=data_device,
max_input_seq_len_for_multimodal=options.max_input_len)
metadata.dataset_path = options.dataset_path
params["target_input_len"] = params.get(
"target_input_len") or metadata.avg_isl
params["target_output_len"] = params.get(
"target_output_len") or metadata.avg_osl
if options.modality is None:
# Log dataset info
# NOTE: This table is only accurate for non-multimodal models.
# The accurate table for multimodal models will be logged after the benchmark is done.
logger.info(metadata.get_summary_for_print())
# Engine configuration parsing
if options.backend and options.backend.lower(
) in ALL_SUPPORTED_BACKENDS and options.backend.lower() != "tensorrt":
# If we're dealing with a model name, perform a snapshot download to
# make sure we have a local copy of the model.
if bench_env.checkpoint_path is None:
snapshot_download(options.model)
exec_settings = get_settings(params, metadata, bench_env.model,
bench_env.checkpoint_path)
kwargs_max_sql = options.max_seq_len or metadata.max_sequence_length
logger.info(f"Setting PyTorch max sequence length to {kwargs_max_sql}")
kwargs["max_seq_len"] = kwargs_max_sql
elif options.backend.lower() == "tensorrt":
assert options.max_seq_len is None, (
"max_seq_len is not a runtime parameter for C++ backend")
exec_settings, build_cfg = get_settings_from_engine(options.engine_dir)
engine_max_seq_len = build_cfg["max_seq_len"]
# TODO: Verify that the engine can handle the max/min ISL/OSL.
if metadata.max_sequence_length > engine_max_seq_len:
raise RuntimeError(
f"Engine supports a max sequence of {engine_max_seq_len}. "
"Provided dataset contains a maximum sequence of "
f"{metadata.max_sequence_length}. Please rebuild a new engine "
"to support this dataset.")
else:
raise RuntimeError(
f"Invalid backend: {options.backend}, please use one of the following: "
"pytorch, tensorrt, _autodeploy.")
exec_settings["model"] = options.model
engine_bs = exec_settings["settings_config"]["max_batch_size"]
engine_tokens = exec_settings["settings_config"]["max_num_tokens"]
# Runtime Options
runtime_max_bs = max_batch_size or engine_bs
runtime_max_tokens = max_num_tokens or engine_tokens
# Update configuration with runtime options
exec_settings["settings_config"][
"kv_cache_percent"] = options.kv_cache_percent
exec_settings["settings_config"]["max_batch_size"] = runtime_max_bs
exec_settings["settings_config"]["max_num_tokens"] = runtime_max_tokens
exec_settings["settings_config"]["beam_width"] = options.beam_width
exec_settings["settings_config"][
"scheduler_policy"] = CapacitySchedulerPolicy.GUARANTEED_NO_EVICT if scheduler_policy == "guaranteed_no_evict" else CapacitySchedulerPolicy.MAX_UTILIZATION
exec_settings["settings_config"]["chunking"] = enable_chunked_context
# Dynamic runtime features.
exec_settings["settings_config"]["dynamic_max_batch_size"] = True
# LlmArgs
exec_settings["extra_llm_api_options"] = params.pop("extra_llm_api_options")
exec_settings["iteration_log"] = options.iteration_log
# Construct the runtime configuration dataclass.
runtime_config = RuntimeConfig(**exec_settings)
llm = None
try:
logger.info("Setting up throughput benchmark.")
kwargs = kwargs | runtime_config.get_llm_args()
kwargs['skip_tokenizer_init'] = not no_skip_tokenizer_init
kwargs['backend'] = options.backend
llm = get_llm(runtime_config, kwargs)
sampler_args = {
"end_id": options.eos_id,
"pad_id": options.eos_id,
"n": options.beam_width,
"use_beam_search": options.beam_width > 1
}
sampler_args = update_sampler_args_with_extra_options(
sampler_args, params.pop("sampler_options"))
sampling_params = SamplingParams(**sampler_args)
post_proc_params = None # No detokenization
# Perform warmup if requested.
if options.warmup > 0:
logger.info("Setting up for warmup...")
warmup_dataset = generate_warmup_dataset(requests, options.warmup)
logger.info("Running warmup.")
asyncio.run(
async_benchmark(llm,
sampling_params,
post_proc_params,
warmup_dataset,
False,
options.concurrency,
modality=options.modality))
# WAR: IterationResult is a singleton tied to the executor.
# Since the benchmark calls asyncio.run() multiple times (e.g., during warmup),
# we must reset it to ensure it attaches to the correct event loop.
llm._executor._iter_stats_result = None
logger.info("Warmup done.")
iteration_writer = options.iteration_writer
with iteration_writer.capture():
statistics = asyncio.run(
async_benchmark(llm,
sampling_params,
post_proc_params,
requests,
options.streaming,
options.concurrency,
iteration_writer.full_address,
modality=options.modality))
logger.info("Benchmark done. Reporting results...")
if options.modality is not None:
# For multimodal models, we need to update the metadata with the correct input lengths
metadata = update_metadata_for_multimodal(metadata, statistics)
report_utility = ReportUtility(statistics, metadata, runtime_config,
logger, kwargs, options.streaming)
# Generate reports for statistics, output tokens, and request info.
generate_json_report(options.report_json,
report_utility.get_statistics_dict)
generate_json_report(
options.output_json,
partial(report_utility.get_output_tokens, tokenizer))
generate_json_report(
options.request_json,
partial(report_utility.get_request_info, tokenizer))
report_utility.report_statistics()
except KeyboardInterrupt:
logger.info("Keyboard interrupt, exiting benchmark...")
except Exception:
import traceback
logger.error(f"Error during benchmarking:\n{traceback.format_exc()}")
sys.exit(1)
finally:
if llm is not None:
llm.shutdown()