mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
test: add test cases for 0.19 release (#3608) * fix test name * add quickstart test for nemotron-ultra * add rcca multi-node test case for deepseek-v3 * add rcca info --------- squash (#3642) fix: nvbugs/5187237: fix deterministic mode crash (#3448) * nvbugs/5187237 nvbugs/5112075: fix deterministic mode error * remove waive * Revert "remove waive" This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac. * revert ar fusion --------- update fp8 doc (#3647) tests: change qa perf test to trtllm-bench (#3619) fix: FP8 quantized lm_head (NvBug 5214229) (#3567) infra: Add PR approval protection for the release branch (#3634) fix: nvbugs/5231298: pytorch allreduce issue (#3673) Fix: nvbugs/5222698 variable not defined (#3630) * Fix: nvbugs/5222698 variable not defined * Tidy code --------- test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685) test:restore fp8 kv cache testing for L0 (#3671) doc: Update DeepSeek perf docs (#3693) * Update DeepSeek perf docs * update * Apply suggestions from code review --------- tests: waive test_llm_multi_node (#3664) fix: update test_user_buffers_mm_add_prologue atol (#3711) Fix: cherry-pick hmac encryption from main branch (#3635) * security fix cherry-pick changes from main * fix hmac in remote mpi session (#3649) --------- Un-waive DS-V3-Lite tests. (#3621) fix: FP8 kv accuracy (#3675) * fix FP8 kv accuracy * update doc --------- Fix script options for engines. (#3622) unwaive multi-node test (#3721) chore : Split more tests out of gpt tests (#3524) (#3674) doc:add torch examples link into torch backend documentation (#3749) test: Get Eagle tests working (#3593) (#3722) Waive L0 test (#3756) waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656) Update ds v3 parameters in stress test. (#3676) waive gemma on L20 (#3766) https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758) Include Qwen2VLDecoderLayer in the smooth_qwen2_model function. fix: PP4 fixes and cleanup (#3688) remove benchmark test list (#3643) skip disagg deepseek test if sm!=90 (#3720) test: skip failed cases on B200 (#3710) * add skip condition to tests * fix error --------- test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718) * skip_pre_ada for fp8 cases * update * update after rebase --------- add know issue to deepseek doc. (#3800) Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761) Waive L0 tests (#3826) fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793) * Reduce memory usage in fused moe op associated with AutoTuning. * Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens. * Add free_memory logic of workspace in min_latency_mode fused moe path. * Fix fused_moe fallback issue. (#3652) min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression. --------- [doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797) Fix pre-commit Fix again Address some review comments for the MI Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
98 lines
3.5 KiB
Plaintext
98 lines
3.5 KiB
Plaintext
/*
|
|
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "tensorrt_llm/kernels/communicationKernels/allReduceWorkspace.h"
|
|
|
|
namespace tensorrt_llm::kernels::ar_fusion
|
|
{
|
|
|
|
__global__ void lamport_initialize_kernel(float* ptr, int size)
|
|
{
|
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (idx >= size)
|
|
return;
|
|
ptr[idx] = -0.f;
|
|
}
|
|
|
|
void lamport_initialize(void* ptr, int bytes, cudaStream_t stream)
|
|
{
|
|
int grid_size = (bytes + 127) / 128;
|
|
lamport_initialize_kernel<<<grid_size, 128, 0, stream>>>(reinterpret_cast<float*>(ptr), bytes / sizeof(float));
|
|
}
|
|
|
|
Workspace::Workspace(int rank, int tp_size, int max_token_num, int hidden_dim,
|
|
std::shared_ptr<tensorrt_llm::runtime::CudaStream> stream_ptr)
|
|
: m_world_config(tp_size, 1, 1, rank, tp_size)
|
|
, m_cuda_stream(stream_ptr)
|
|
{
|
|
bool p2p_supported = tensorrt_llm::runtime::canAccessPeer(m_world_config);
|
|
TLLM_CHECK(p2p_supported);
|
|
int device_id;
|
|
TLLM_CUDA_CHECK(cudaGetDevice(&device_id));
|
|
m_buffer_mgr = std::make_shared<tensorrt_llm::runtime::BufferManager>(m_cuda_stream);
|
|
int buffer_size = tp_size * max_token_num * hidden_dim * sizeof(half);
|
|
int flag_size = tp_size * kBarrierFlagCount * sizeof(int);
|
|
int lamport_comm_size = tp_size * std::max(kOneShotMaxToken, max_token_num) * hidden_dim * sizeof(half);
|
|
int lamport_buffer_size = 3 * lamport_comm_size;
|
|
for (auto size : {buffer_size, flag_size, lamport_buffer_size})
|
|
{
|
|
m_ipc_mem_handles.emplace_back(size, *m_buffer_mgr, m_world_config, p2p_supported);
|
|
}
|
|
std::vector<void*> workspace;
|
|
for (auto& ipc_mem_handle : m_ipc_mem_handles)
|
|
{
|
|
for (int r = 0; r < tp_size; ++r)
|
|
{
|
|
workspace.push_back(ipc_mem_handle.getCommPtrs()[r]);
|
|
}
|
|
}
|
|
// atomic flag read counter
|
|
// kernel_flag_ptr[0] = 0;
|
|
// non-lamport flag
|
|
// kernel_flag_ptr[1] = 0;
|
|
// lamport flag
|
|
// kernel_flag_ptr[2] = 0;
|
|
// lamport triple buffer offset
|
|
// kernel_flag_ptr[3] = lamport_comm_size;
|
|
// lamport clear size
|
|
// kernel_flag_ptr[4] = 0;
|
|
TLLM_CUDA_CHECK(cudaMalloc(&m_flag_d_ptr, 5 * sizeof(int)));
|
|
std::vector<int> h_data{0, 0, 0, lamport_comm_size, 0};
|
|
TLLM_CUDA_CHECK(cudaMemcpy(m_flag_d_ptr, h_data.data(), 5 * sizeof(int), cudaMemcpyHostToDevice));
|
|
workspace.push_back(m_flag_d_ptr);
|
|
TLLM_CUDA_CHECK(cudaMalloc(&m_workspace, workspace.size() * sizeof(void*)));
|
|
TLLM_CUDA_CHECK(
|
|
cudaMemcpy(m_workspace, workspace.data(), workspace.size() * sizeof(void*), cudaMemcpyHostToDevice));
|
|
lamport_initialize(m_ipc_mem_handles[2].getCommPtrs()[rank], lamport_buffer_size, 0);
|
|
}
|
|
|
|
Workspace::~Workspace()
|
|
{
|
|
if (m_flag_d_ptr)
|
|
{
|
|
TLLM_CUDA_CHECK(cudaFree(m_flag_d_ptr));
|
|
}
|
|
if (m_workspace)
|
|
{
|
|
TLLM_CUDA_CHECK(cudaFree(m_workspace));
|
|
}
|
|
}
|
|
|
|
void** Workspace::get_workspace()
|
|
{
|
|
return reinterpret_cast<void**>(m_workspace);
|
|
}
|
|
}; // namespace tensorrt_llm::kernels::ar_fusion
|