mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
304 lines
9.3 KiB
C++
304 lines
9.3 KiB
C++
/*
|
|
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "IntFastDiv.h"
|
|
#include "tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h"
|
|
|
|
#include <cuda.h>
|
|
#include <cuda_runtime_api.h>
|
|
#include <tensorrt_llm/common/cudaUtils.h>
|
|
|
|
namespace moe::dev
|
|
{
|
|
|
|
namespace routing
|
|
{
|
|
|
|
namespace tg = batchedGemm::trtllm::gen;
|
|
|
|
template <typename DataType>
|
|
struct PackedScoreIdx
|
|
{
|
|
DataType score;
|
|
int16_t idx;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct DataBase
|
|
{
|
|
bool mUsePdl{false};
|
|
|
|
// optional: only used as an intermediate buffer when the number of tokens is large.
|
|
// dim: max([2*NumThreads] = [512], mNumExperts*2)
|
|
int32_t* mPtrExpertCounts{nullptr};
|
|
// optional: if `nullptr`, it is not filled
|
|
// dim: [1]
|
|
int32_t* mPtrPermutedIdxSize{nullptr};
|
|
// optional: if `nullptr`, it is not filled
|
|
// dim: [mNumTokens * mTopK]
|
|
int32_t* mPtrExpandedIdxToPermutedIdx{nullptr};
|
|
// optional: if `nullptr`, it is not filled
|
|
// dim: [mNumTokens * mTopK + (mNumExperts << mPaddingLog2) - mNumExperts]
|
|
// Note: this array (mPtrPermutedIdxToTokenIdx) is uninitialized
|
|
// Any out-of-bounds values are undefined.
|
|
int32_t* mPtrPermutedIdxToTokenIdx{nullptr};
|
|
// optional: if `nullptr`, it is not filled
|
|
// dim: [mNumTokens, mTopK]
|
|
void* mPtrExpertWeights{nullptr};
|
|
// optional: if `nullptr`, scores are used directly as input.
|
|
// If it is given, it must represent a packed value s.t. the most significant
|
|
// 16/32 bits represent the score without sigmoid activation and
|
|
// the least significant 16 bits represent the index of the chosen expert (unsigned).
|
|
// note: this is required if the number of tokens is large.
|
|
// dim: [mNumTokens, mTopK]
|
|
void* mPtrExpertIdx{nullptr};
|
|
// optional: if `nullptr`, `mPtrExpertIdx` must be provided.
|
|
// If it is given, it represents the scores without sigmoid activation for
|
|
// each token and expert.
|
|
// note: if it is provided, we always re-compute the top1 scores
|
|
// dim: [mNumTokens, mNumExperts]
|
|
void const* mPtrScores{nullptr};
|
|
|
|
//
|
|
// Grouped Gemm Launch Config Buffers
|
|
//
|
|
int32_t* mPtrCtaIdxXyToBatchIdx{nullptr};
|
|
int32_t* mPtrCtaIdxXyToMnLimit{nullptr};
|
|
int32_t* mPtrNumNonExitingCtas{nullptr};
|
|
|
|
//
|
|
// Metadata
|
|
//
|
|
int32_t mNumTokens;
|
|
int32_t mNumExperts;
|
|
int32_t mTopK;
|
|
int32_t mPaddingLog2;
|
|
|
|
/// For expert parallelization
|
|
int32_t mLocalExpertsStartIdx;
|
|
int32_t mLocalExpertsStrideLog2;
|
|
int32_t mNumLocalExperts;
|
|
};
|
|
|
|
template <typename InputT_, typename OutputT_, bool UsePdl_>
|
|
struct KernelParamsBase
|
|
{
|
|
using InputT = InputT_;
|
|
using OutputT = OutputT_;
|
|
static constexpr bool UsePdl = UsePdl_;
|
|
|
|
// Public pointer members
|
|
int32_t* mPtrExpertCounts = nullptr;
|
|
int32_t* mPtrPermutedIdxSize = nullptr;
|
|
int32_t* mPtrExpandedIdxToPermutedIdx = nullptr;
|
|
int32_t* mPtrPermutedIdxToTokenIdx = nullptr;
|
|
int32_t* mPtrCtaIdxXyToBatchIdx = nullptr;
|
|
int32_t* mPtrCtaIdxXyToMnLimit = nullptr;
|
|
int32_t* mPtrNumNonExitingCtas = nullptr;
|
|
OutputT* mPtrExpertWeights = nullptr;
|
|
InputT const* mPtrScores = nullptr;
|
|
|
|
// Public scalar members
|
|
int32_t mNumTokens = 0;
|
|
int32_t mNumExperts = 0;
|
|
|
|
int32_t mPaddingLog2 = 0;
|
|
int32_t mLocalExpertsStartIdx = 0;
|
|
int32_t mLocalExpertsStrideLog2 = 0;
|
|
int32_t mNumLocalExperts = 0;
|
|
|
|
// Public initialization function - make it a template to accept different Data types
|
|
template <typename DataType>
|
|
void setBaseParams(DataType const& data)
|
|
{
|
|
mPtrExpertCounts = data.mPtrExpertCounts;
|
|
mPtrPermutedIdxSize = data.mPtrPermutedIdxSize;
|
|
mPtrExpandedIdxToPermutedIdx = data.mPtrExpandedIdxToPermutedIdx;
|
|
mPtrPermutedIdxToTokenIdx = data.mPtrPermutedIdxToTokenIdx;
|
|
mPtrCtaIdxXyToBatchIdx = data.mPtrCtaIdxXyToBatchIdx;
|
|
mPtrCtaIdxXyToMnLimit = data.mPtrCtaIdxXyToMnLimit;
|
|
mPtrNumNonExitingCtas = data.mPtrNumNonExitingCtas;
|
|
mPtrExpertWeights = static_cast<OutputT*>(data.mPtrExpertWeights);
|
|
mPtrScores = (InputT const*) data.mPtrScores;
|
|
|
|
mNumTokens = data.mNumTokens;
|
|
mNumExperts = data.mNumExperts;
|
|
|
|
mPaddingLog2 = data.mPaddingLog2;
|
|
mLocalExpertsStartIdx = data.mLocalExpertsStartIdx;
|
|
mLocalExpertsStrideLog2 = data.mLocalExpertsStrideLog2;
|
|
mNumLocalExperts = data.mNumLocalExperts;
|
|
}
|
|
};
|
|
|
|
namespace routingDeepSeek
|
|
{
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
struct Data : public DataBase
|
|
{
|
|
tg::Dtype mDtypeExpW{tg::Dtype::Bfloat16};
|
|
|
|
//
|
|
// Grouped Gemm Launch Config Buffers
|
|
//
|
|
void const* mPtrRoutingBias;
|
|
|
|
int32_t mHiddenDim; // not used
|
|
int32_t mNumExpertGroups;
|
|
int32_t mNumLimitedGroups;
|
|
|
|
float mRouteScale;
|
|
bool mUseRoutingSoftmax;
|
|
};
|
|
|
|
template <typename InputT_, typename OutputT_, bool UseGroups_, bool UsePdl_>
|
|
struct KernelParams : public KernelParamsBase<InputT_, OutputT_, UsePdl_>
|
|
{
|
|
using InputT = InputT_;
|
|
using OutputT = OutputT_;
|
|
|
|
static constexpr bool UseGroups = UseGroups_;
|
|
|
|
PackedScoreIdx<OutputT>* mPtrExpertIdx = nullptr;
|
|
|
|
// OutputT* mPtrExpertWeightsFull = nullptr;
|
|
// Note: this variable(mPtrExpertWeightsFull) might need to be added back for the low-latency kernels for MoE in
|
|
// tllm-gen in the future
|
|
|
|
OutputT const* mPtrRoutingBias = nullptr;
|
|
|
|
int32_t mNumExpertGroups = 0;
|
|
int32_t mNumExpertsPerGroup = 0;
|
|
int32_t mNumLimitedGroups = 0;
|
|
|
|
trtllm::dev::IntFastDiv mTopK;
|
|
float mRouteScale = 0.f;
|
|
|
|
static KernelParams setKernelParams(Data const& data)
|
|
{
|
|
KernelParams params;
|
|
params.setBaseParams(data);
|
|
|
|
params.mPtrExpertIdx = (PackedScoreIdx<OutputT>*) data.mPtrExpertIdx;
|
|
|
|
// params.mPtrExpertWeightsFull = static_cast<OutputT*>(data.mPtrExpertWeightsFull);
|
|
params.mPtrRoutingBias = static_cast<OutputT const*>(data.mPtrRoutingBias);
|
|
|
|
params.mNumExpertGroups = data.mNumExpertGroups;
|
|
params.mNumExpertsPerGroup = data.mNumExperts / data.mNumExpertGroups;
|
|
params.mNumLimitedGroups = data.mNumLimitedGroups;
|
|
params.mTopK = trtllm::dev::IntFastDiv(data.mTopK);
|
|
params.mRouteScale = data.mRouteScale;
|
|
|
|
return params;
|
|
}
|
|
};
|
|
|
|
void run(Data& data, void* stream);
|
|
|
|
} // namespace routingDeepSeek
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace routingLlama4
|
|
{
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct Data : public DataBase
|
|
{
|
|
tg::Dtype mDtypeExpW{tg::Dtype::Bfloat16};
|
|
};
|
|
|
|
template <typename InputT_, typename OutputT_, bool UsePdl_>
|
|
struct KernelParams : public KernelParamsBase<InputT_, OutputT_, UsePdl_>
|
|
{
|
|
using InputT = InputT_;
|
|
using OutputT = OutputT_;
|
|
|
|
PackedScoreIdx<OutputT>* mPtrExpertIdx = nullptr;
|
|
|
|
int32_t mTopK;
|
|
|
|
static KernelParams setKernelParams(Data const& data)
|
|
{
|
|
KernelParams params;
|
|
params.setBaseParams(data);
|
|
|
|
params.mPtrExpertIdx = (PackedScoreIdx<OutputT>*) data.mPtrExpertIdx;
|
|
params.mTopK = data.mTopK;
|
|
return params;
|
|
}
|
|
};
|
|
|
|
void run(Data const& data, void* stream);
|
|
|
|
} // namespace routingLlama4
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace routingRenormalize
|
|
{
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct Data : public DataBase
|
|
{
|
|
tg::Dtype mDtypeExpW{tg::Dtype::Fp32};
|
|
tg::Dtype mDtypeElt{tg::Dtype::Bfloat16};
|
|
|
|
bool mDoSoftmaxBeforeTopK{false};
|
|
bool mNormTopkProb{true}; // Default value is true for Qwen3 model
|
|
};
|
|
|
|
template <typename InputT_, typename OutputT_, bool DoSoftmaxBeforeTopK_, bool UsePdl_>
|
|
struct KernelParams : public KernelParamsBase<InputT_, OutputT_, UsePdl_>
|
|
{
|
|
using InputT = InputT_;
|
|
using OutputT = OutputT_;
|
|
|
|
static constexpr bool DoSoftmaxBeforeTopK = DoSoftmaxBeforeTopK_;
|
|
|
|
PackedScoreIdx<OutputT>* mPtrExpertIdx = nullptr;
|
|
|
|
int32_t mTopK = 0;
|
|
|
|
bool mNormTopkProb = true;
|
|
|
|
static KernelParams setKernelParams(Data const& data)
|
|
{
|
|
KernelParams params;
|
|
params.setBaseParams(data);
|
|
|
|
params.mPtrExpertIdx = (PackedScoreIdx<OutputT>*) data.mPtrExpertIdx;
|
|
params.mNormTopkProb = data.mNormTopkProb;
|
|
params.mTopK = data.mTopK;
|
|
return params;
|
|
}
|
|
};
|
|
|
|
void run(Data const& data, void* stream);
|
|
|
|
} // namespace routingRenormalize
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
} // namespace routing
|
|
} // namespace moe::dev
|