TensorRT-LLMs/tensorrt_llm/layers/moe.py
2024-07-24 19:50:28 +08:00

698 lines
29 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass
from enum import IntEnum
from typing import List, Optional, Type, Union
import numpy as np
import tensorrt as trt
from tensorrt_llm._utils import get_init_params, str_dtype_to_trt
from tensorrt_llm.layers.lora import LoraParams
from .._common import default_net, default_trtnet
from .._utils import int32_array
from ..functional import (AllReduceFusionParams, AllReduceStrategy,
_add_plugin_info, _create_tensor, allreduce, cast,
concat, constant, div, expand, gather_nd,
is_gated_activation, non_gated_version, nonzero,
repeat_interleave, scatter_nd, shape, softmax, split,
sum, topk)
from ..layers import MLP, GatedMLP
from ..mapping import Mapping
from ..module import Module, ModuleList
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from ..quantization import QuantMode
from ..quantization.functional import quantize
from .linear import RowLinear
activation_str_to_int_map = {
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_kernels.h
"gelu": 0,
"gelu_new": 0,
"relu": 1,
"silu": 2,
"swiglu": 3,
"geglu": 4,
"identity": 5,
}
@dataclass
class MoeConfig:
class ExpertScaleNormalizationMode(IntEnum):
NONE = 0
RENORMALIZE = 1
num_experts: int = 0
top_k: int = 0
normalization_mode: ExpertScaleNormalizationMode = ExpertScaleNormalizationMode.RENORMALIZE
tp_mode: int = 0
def validate(self) -> "MoeConfig":
if (self.num_experts == 0) != (self.top_k == 0):
raise ValueError(
"Both or neither MoeConfig's num_experts and top_k must be set to 0"
)
return self
def has_moe(self) -> bool:
return self.num_experts > 1
@classmethod
def from_dict(cls, config: dict):
return cls(**config)
def to_dict(self):
return asdict(self)
def _moe_plugin(moe_config,
hidden_states,
routing,
finished,
expert_weights_1,
expert_weights_2,
expert_bias_1,
expert_bias_2,
expert_scale_1,
expert_scale_2,
expert_scale_3,
expert_scale_4,
hidden_size,
ffn_hidden_size,
act_fn,
dtype,
weight_dtype,
output_dtype,
quant_mode=QuantMode(0),
tp_size=1,
ep_size=1,
tp_rank=0,
ep_rank=0):
if isinstance(dtype, str):
dtype = str_dtype_to_trt(dtype)
if isinstance(weight_dtype, str):
weight_dtype = str_dtype_to_trt(weight_dtype)
if isinstance(output_dtype, str):
output_dtype = str_dtype_to_trt(output_dtype)
def from_parameter(x):
if isinstance(x, Parameter):
return x.value
return x
expert_weights_1 = from_parameter(expert_weights_1)
expert_weights_2 = from_parameter(expert_weights_2)
expert_bias_1 = from_parameter(expert_bias_1)
expert_bias_2 = from_parameter(expert_bias_2)
expert_scale_1 = from_parameter(expert_scale_1)
expert_scale_2 = from_parameter(expert_scale_2)
expert_scale_3 = from_parameter(expert_scale_3)
expert_scale_4 = from_parameter(expert_scale_4)
# Create the plugin with our required state
num_experts = moe_config.num_experts
# We pass the full number of experts (not divided by ep_size) even for EP mode
p_num_experts = trt.PluginField("number_of_experts",
np.array(num_experts, dtype=np.int32),
trt.PluginFieldType.INT32)
p_top_k = trt.PluginField("top_k", np.array(moe_config.top_k,
dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_hidden_size = trt.PluginField(
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_inter_size = trt.PluginField(
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_activation_type = trt.PluginField(
"activation_type",
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
trt.PluginFieldType.INT32)
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
dtype=np.int32),
trt.PluginFieldType.INT32)
p_weight_type_id = trt.PluginField(
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_output_type_id = trt.PluginField(
"output_type_id", np.array([int(output_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_quant_mode = trt.PluginField("quant_mode",
np.array([int(quant_mode)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_finished = trt.PluginField(
"use_finished", np.array([int(finished is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_bias = trt.PluginField(
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_ep_size = trt.PluginField("ep_size", np.array(ep_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_ep_rank = trt.PluginField("ep_rank", np.array(ep_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_normalization_mode = trt.PluginField(
"normalization_mode",
np.array(moe_config.normalization_mode, dtype=np.int32),
trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection([
p_num_experts, p_top_k, p_expert_hidden_size, p_expert_inter_size,
p_activation_type, p_type_id, p_weight_type_id, p_output_type_id,
p_quant_mode, p_use_finished, p_use_bias, p_tp_size, p_tp_rank,
p_ep_size, p_ep_rank, p_normalization_mode
])
# Create the plugin with our constant inputs to the constructor
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plugin_creator is not None
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
# Instantiate the plugin with our specific inputs
plugin_inputs = [hidden_states, routing, expert_weights_1, expert_weights_2]
if expert_bias_1:
assert expert_bias_2
plugin_inputs += [expert_bias_1, expert_bias_2]
if finished is not None:
plugin_inputs += [finished]
# Add conditional inputs
if quant_mode.is_weight_only() or quant_mode.has_fp8_qdq():
assert expert_scale_1
assert expert_scale_2
plugin_inputs += [expert_scale_1, expert_scale_2]
# Add conditional inputs
if quant_mode.has_fp8_qdq():
assert expert_scale_3
plugin_inputs += [expert_scale_3]
if expert_scale_4 is not None:
assert quant_mode.has_fp8_qdq()
assert output_dtype == trt.fp8
plugin_inputs += [expert_scale_4]
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
_add_plugin_info(layer, plugin_creator, "mixture_of_experts", pfc)
if not default_net().strongly_typed:
for ii in range(layer.num_inputs):
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
layer.get_input(ii).set_dynamic_range(-127, 127)
output = _create_tensor(layer.get_output(0), layer)
return output
# This exists so that MOE can have the same name format as a regular MLP, just with different shaped weight tensors
class MOEWeightWrapper(Module):
def __init__(self, in_features: int, out_features: int,
experts_per_node: int, quant_mode: QuantMode,
dtype: Union[str, trt.DataType],
weight_dtype: Union[str, trt.DataType], has_bias: bool):
super().__init__()
self.quant_mode = quant_mode
self.expert_shape = (experts_per_node, out_features, in_features)
self.dtype = dtype
self.weight_dtype = weight_dtype
self.has_bias = has_bias
if quant_mode.is_weight_only():
bytes_per_col_scale = 2 if quant_mode.is_int4_weight_only() else 1
# We use a different shape here because the quantized weights have their own layout
self.expert_shape = (experts_per_node, in_features,
out_features // bytes_per_col_scale)
self.per_channel_scale = Parameter(shape=(experts_per_node,
out_features),
dtype=dtype)
else:
self.register_parameter('per_channel_scale', None)
self.weight = Parameter(shape=self.expert_shape, dtype=weight_dtype)
if has_bias:
self.bias = Parameter(shape=(experts_per_node, out_features),
dtype=dtype)
else:
self.register_parameter('bias', None)
if quant_mode.has_fp8_qdq():
self.activation_scaling_factor = Parameter(shape=(1, ),
dtype=trt.float32)
self.weights_scaling_factor = Parameter(shape=(experts_per_node, 1),
dtype=trt.float32)
else:
self.register_parameter('activation_scaling_factor', None)
self.register_parameter('weights_scaling_factor', None)
class MixtureOfExperts(Module):
def __init__(self,
moe_config: MoeConfig,
hidden_size: int,
ffn_hidden_size: int,
hidden_act: str,
mapping: Mapping = Mapping(),
bias: bool = True,
dtype=None,
tp_group: List[int] = None,
tp_size: int = 1,
quant_mode=QuantMode(0)):
super().__init__()
self.moe_config = moe_config
self.num_experts = moe_config.num_experts
self.top_k = moe_config.top_k
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.expert_inter_size = ffn_hidden_size
self.dtype = dtype
self.weight_dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.mapping = mapping
self.quant_mode = quant_mode
self.bias = bias
self.experts_per_node = self.num_experts
if self.mapping.has_moe_ep():
if self.num_experts % self.mapping.moe_ep_size != 0:
raise ValueError(
f"MixtureOfExperts - Number of experts {self.num_experts} is not a multiple of EP size {self.mapping.moe_ep_size}"
)
self.experts_per_node = self.experts_per_node // self.mapping.moe_ep_size
if self.mapping.has_moe_tp():
if self.ffn_hidden_size % self.mapping.moe_tp_size != 0:
raise ValueError(
f"MixtureOfExperts - FFN Hidden Size {self.ffn_hidden_size} is not a multiple of TP size {self.mapping.moe_tp_size}"
)
self.expert_inter_size = self.ffn_hidden_size // self.mapping.moe_tp_size
if quant_mode.has_fp8_qdq() and self.bias:
# TODO (dastokes) We will need to revisit this if we have a use case for it
raise ValueError(
f"MixtureOfExperts - Bias is not supported with FP8")
if quant_mode.is_weight_only():
self.weight_dtype = trt.int8
elif quant_mode.has_fp8_qdq():
self.weight_dtype = trt.fp8
# Since output dimension is usually low (in the order of 10s), no TP at
# all is more efficient as no allreduce required in the end.
# Note that if we see models that have large number of experts, we may
# need to consider add TP back here.
# TODO: Arctic has large # experts, we may need to add TP back here.
self.router = RowLinear(
hidden_size,
self.num_experts,
bias=False,
dtype=trt.
float32, # Routing is sensitive since it conditions what experts are used
tp_group=None,
tp_size=1,
strict_dtype=True)
self.init_experts()
def init_experts(self):
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
# The left matrix is a linear projection (no activation applied)
# The right matrix is the gating value (activation applied)
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
fc_out_size = self.expert_inter_size * 2 if is_gated_activation(
self.hidden_act) else self.expert_inter_size
self.fc = MOEWeightWrapper(self.hidden_size, fc_out_size,
self.experts_per_node, self.quant_mode,
self.dtype, self.weight_dtype, self.bias)
self.proj = MOEWeightWrapper(self.expert_inter_size, self.hidden_size,
self.experts_per_node, self.quant_mode,
self.dtype, self.weight_dtype, self.bias)
def forward(self,
hidden_states,
finished=None,
lora_layer_params=None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
moe_router_lora_params = None
if lora_layer_params is not None:
moe_router_lora_params = lora_layer_params.get_runtime_params(
0, "moe_router")
routing_input = cast(hidden_states, trt.float32)
routing = self.router(routing_input, moe_router_lora_params)
return self.forward_experts(hidden_states, routing, finished,
lora_layer_params, reduce_fusion_params)
def forward_experts(self, hidden_states, routing, finished,
lora_layer_params,
reduce_fusion_params: Optional[AllReduceFusionParams]):
if lora_layer_params is not None:
for module in ["mlp_h_to_4h", "mlp_4h_to_h", "mlp_gate"]:
if lora_layer_params.get_runtime_params(0, module) is not None:
raise RuntimeError(
f"MoE plugin does not support {module} LoRA module, please disable MoE plugin"
)
if self.quant_mode.has_fp8_qdq():
assert self.fc.weight.value.dtype == trt.fp8, (
"mlp fc weight dtype should be fp8 in the fp8 quantization mode."
)
assert self.proj.weight.value.dtype == trt.fp8, (
"mlp proj weight dtype should be fp8 in the fp8 quantization mode."
)
hidden_states_quant = hidden_states
if hidden_states_quant.dtype != trt.fp8:
hidden_states_quant = quantize(
hidden_states, self.fc.activation_scaling_factor.value,
'fp8')
dtype_quant = trt.fp8
weight_dtype_quant = trt.fp8
fc1_dequant = self.fc.weights_scaling_factor.value * self.fc.activation_scaling_factor.value
fc2_quant = div(1.0, self.proj.activation_scaling_factor.value)
fc2_dequant = self.proj.weights_scaling_factor.value * self.proj.activation_scaling_factor.value
scale_1 = fc1_dequant
scale_2 = fc2_quant
scale_3 = fc2_dequant
scale_4 = None
output_dtype_quant = self.dtype
if output_dtype_quant == trt.fp8 and scale_4 is None:
raise RuntimeError(
"Cannot output FP8 value without knowing quantization parameter"
)
else:
hidden_states_quant = hidden_states
dtype_quant = self.dtype
weight_dtype_quant = self.weight_dtype
output_dtype_quant = self.dtype
scale_1 = self.fc.per_channel_scale
scale_2 = self.proj.per_channel_scale
scale_3 = None
scale_4 = None
output = _moe_plugin(self.moe_config,
hidden_states_quant,
routing,
expert_weights_1=self.fc.weight.value,
expert_weights_2=self.proj.weight.value,
expert_bias_1=self.fc.bias,
expert_bias_2=self.proj.bias,
expert_scale_1=scale_1,
expert_scale_2=scale_2,
expert_scale_3=scale_3,
expert_scale_4=scale_4,
finished=finished,
hidden_size=self.hidden_size,
ffn_hidden_size=self.expert_inter_size,
act_fn=self.hidden_act,
dtype=dtype_quant,
weight_dtype=weight_dtype_quant,
output_dtype=output_dtype_quant,
quant_mode=self.quant_mode,
tp_size=self.mapping.moe_tp_size,
tp_rank=self.mapping.moe_tp_rank,
ep_size=self.mapping.moe_ep_size,
ep_rank=self.mapping.moe_ep_rank)
if self.tp_size > 1 and self.tp_group is not None:
output = allreduce(output,
self.tp_group,
reduce_fusion_params=reduce_fusion_params)
return output
def load_weights(self, moe: "MixtureOfExperts"):
'''
Load weights from base MOE layer
'''
raise NotImplementedError("Subclass shall override this")
def to(self,
moe_cls: Type["MixtureOfExperts"],
quant_config=None) -> "MixtureOfExperts":
from ..quantization.quantize import quantize
if isinstance(self, moe_cls):
return self
new_moe = moe_cls(**get_init_params(self))
# If config is not None, set quantization from config
if quant_config is not None:
quantize(new_moe, quant_config)
new_moe.load_weights(self)
new_moe.router = self.router
return new_moe
MOE = MixtureOfExperts
class MoeOOTB(MOE):
def init_experts(self):
if self.quant_mode.is_weight_only():
raise ValueError(
f"OOTB MOE does not support weight only quantization now, current quant mode: {self.quant_mode}"
)
ClsMLP = GatedMLP if is_gated_activation(self.hidden_act) else MLP
tp_size = 1
tp_group = None
self.experts = ModuleList([
ClsMLP(self.hidden_size, self.expert_inter_size,
non_gated_version(self.hidden_act), self.bias, self.dtype,
tp_group, tp_size, self.quant_mode)
for _ in range(self.experts_per_node)
])
def moe_to_expert_lora_params(self, lora_layer_params, expert_idx):
def get_params(module):
ranks = lora_layer_params.get_runtime_params(0,
module).lora_ranks[0]
weights_pointers = lora_layer_params.get_runtime_params(
0, module).lora_weights_pointers[0]
return ranks, weights_pointers
if lora_layer_params is None:
return None
fc_lora_ranks, fc_lora_weights_pointers = get_params("moe_h_to_4h")
proj_lora_ranks, proj_lora_weights_pointers = get_params("moe_4h_to_h")
gate_lora_ranks = None
gate_lora_weights_pointers = None
if is_gated_activation(self.hidden_act):
gate_lora_ranks, gate_lora_weights_pointers = get_params("moe_gate")
return LoraParams(
lora_ranks=[{
"mlp_h_to_4h_lora_ranks": fc_lora_ranks,
"mlp_4h_to_h_lora_ranks": proj_lora_ranks,
"mlp_gate_lora_ranks": gate_lora_ranks,
}],
lora_weights_pointers=[{
"mlp_h_to_4h_lora_weights_pointers":
fc_lora_weights_pointers,
"mlp_4h_to_h_lora_weights_pointers":
proj_lora_weights_pointers,
"mlp_gate_lora_weights_pointers":
gate_lora_weights_pointers,
}],
host_context_lengths=lora_layer_params.host_context_lengths,
max_context_length=lora_layer_params.max_context_length,
max_encoder_context_length=lora_layer_params.
max_encoder_context_length,
host_request_types=lora_layer_params.host_request_types,
host_encoder_input_lengths=lora_layer_params.
host_encoder_input_lengths,
weight_index=expert_idx,
)
def forward_experts(self, hidden_states, routing, finished,
lora_layer_params,
reduce_fusion_params: Optional[AllReduceFusionParams]):
if self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE:
topk_values, topk_indices = topk(routing, self.top_k, dim=-1)
topk_values = softmax(topk_values, -1)
else:
router_probs = softmax(routing, -1)
topk_values, topk_indices = topk(router_probs, self.top_k, dim=-1)
hidden_size = shape(hidden_states, -1)
# [B*sq, hidden]
inputs_merged = hidden_states.view(concat([-1, hidden_size]))
flat_topk_indices = topk_indices.view(
concat([-1, shape(topk_indices, -1)]))
flat_topk_values = topk_values.view(concat([-1,
shape(topk_values, -1)]))
# Create output space
zero_buffer = inputs_merged * 0.0
output = zero_buffer
expert_indices_stack = []
indices_stack = []
# When topk indices are equal to expert index, the expert will inference the tokens.
# Bundle all indices and experts index, then do mask once.
for i, expert in enumerate(self.experts):
if self.mapping.has_moe_ep():
index = i + self.experts_per_node * self.mapping.moe_ep_rank
else:
index = i
expert_indices_stack.append(
flat_topk_indices.view(concat([1, shape(flat_topk_indices)])))
indices_stack.append(constant(int32_array(index)))
all_expert_indices = concat(expert_indices_stack, dim=0)
indices = expand(
concat(indices_stack).view(concat([len(self.experts), 1, 1])),
shape(all_expert_indices))
# Create all experts mask
all_expert_mask = all_expert_indices == indices
experts_weights = cast(
sum(flat_topk_values *
cast(all_expert_mask, flat_topk_values.dtype),
dim=-1,
keepdim=True), self.dtype)
all_expert_mask = cast(
sum(cast(all_expert_mask, flat_topk_values.dtype),
dim=-1,
keepdim=True), 'bool')
all_expert_mask = repeat_interleave(all_expert_mask, shape(output, -1),
2)
# split the mask and weights for each expert
experts_mask = split(all_expert_mask, 1, dim=0)
expert_weights = split(experts_weights, 1, dim=0)
for i, expert in enumerate(self.experts):
# get mask token index
non_zero_index = nonzero(experts_mask[i].view(
concat([-1, hidden_size])))
non_zero_index = non_zero_index.transpose(1, 0)
input_for_expert = gather_nd(inputs_merged, non_zero_index, 0)
input_for_expert = input_for_expert.view(concat([-1, hidden_size]),
zero_is_placeholder=False)
# Expert inference
expert_output = expert(
input_for_expert,
lora_layer_params=self.moe_to_expert_lora_params(
lora_layer_params, index))
# scatter expert output to real position
expert_finialized_output = zero_buffer
expert_finialized_output = scatter_nd(
expert_finialized_output, non_zero_index,
expert_output.view([-1])) * expert_weights[i]
output += expert_finialized_output
output = output.view(shape(hidden_states))
need_ep_reduce = self.mapping.has_moe_ep(
) and self.mapping.moe_ep_group is not None
need_tp_reduce = self.mapping.has_moe_tp(
) and self.mapping.moe_tp_group is not None
if need_tp_reduce or need_ep_reduce:
group = self.mapping.moe_ep_group if need_ep_reduce else self.mapping.moe_tp_group
# TODO: remove this NCCL strategy WAR after fixed https://nvbugspro.nvidia.com/bug/4740067
output = allreduce(output,
group,
strategy=AllReduceStrategy.NCCL,
reduce_fusion_params=reduce_fusion_params)
return output
def load_weights(self, moe: MOE):
for i, expert in enumerate(self.experts):
is_gated_act = is_gated_activation(self.hidden_act)
# Gated weight pack in expert1 weights
# expert_weights_1
experts_weight_1_raw = moe.fc.weight.raw_value
fc1_weight_scale = None
fc1_activation_scale = None
fc2_weight_scale = None
fc2_activation_scale = None
if self.quant_mode.has_fp8_qdq():
fc1_weight_scale = moe.fc.weights_scaling_factor.raw_value
fc1_activation_scale = moe.fc.activation_scaling_factor.raw_value
fc2_weight_scale = moe.proj.weights_scaling_factor.raw_value
fc2_activation_scale = moe.proj.activation_scaling_factor.raw_value
if self.quant_mode.is_weight_only():
expert.fc.weight.value = experts_weight_1_raw[
i, :, -self.expert_inter_size:]
if is_gated_act:
expert.gate.weight.value = experts_weight_1_raw[
i, :, :self.expert_inter_size]
else:
expert.fc.weight.value = experts_weight_1_raw[
i, -self.expert_inter_size:, :]
if is_gated_act:
expert.gate.weight.value = experts_weight_1_raw[
i, :self.expert_inter_size, :]
if self.quant_mode.has_fp8_qdq():
expert.fc.activation_scaling_factor.value = fc1_activation_scale
expert.fc.weights_scaling_factor.value = fc1_weight_scale[i]
expert.proj.activation_scaling_factor.value = fc2_activation_scale
expert.proj.weights_scaling_factor.value = fc2_weight_scale[i]
if is_gated_act:
expert.gate.activation_scaling_factor.value = fc1_activation_scale
expert.gate.weights_scaling_factor.value = fc1_weight_scale[
i]
# expert_weights_2
experts_weight_2_raw = moe.proj.weight.raw_value
expert.proj.weight.value = experts_weight_2_raw[i, :, :]
has_bias = self.bias
if has_bias:
experts_bias_1_raw = moe.fc.bias.raw_value
expert.fc.bias.value = experts_bias_1_raw[
i, -self.expert_inter_size:]
experts_bias_2_raw = moe.proj.bias.raw_value
expert.proj.bias.value = experts_bias_2_raw[i, :]
if is_gated_act:
expert.gate.bias.value = experts_bias_1_raw[
i, :self.expert_inter_size]