TensorRT-LLMs/tensorrt_llm/models/qwen/model.py
2024-07-24 19:50:28 +08:00

387 lines
15 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Optional, Union
from ..._utils import pad_vocab_size
from ...functional import Tensor, recv, send, sigmoid
from ...layers import (MLP, MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, RmsNorm, RowLinear)
from ...lora_manager import (LoraConfig,
get_default_trtllm_modules_to_hf_modules, use_lora)
from ...mapping import Mapping
from ...module import Module
from ...quantization import W8A8_SQ_PLUGIN_LIST, QuantAlgo
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig, check_share_embedding)
from .config import QWenConfig
from .convert import (load_hf_qwen, load_weights_from_hf_gptq_model,
load_weights_from_hf_model)
class QWenDecoderLayer(Module):
def __init__(self, config: QWenConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
dtype = config.dtype
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=config.hidden_size,
attention_head_size=config.head_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
dtype=dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=config.position_embedding_type,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode,
dense_bias=False)
ClsMLP = GatedMLP
mlp_kwargs = {}
if config.moe.has_moe():
ClsMLP = MOE
mlp_kwargs = {
"moe_config": config.moe,
"mapping": config.mapping,
}
if config.qwen_type == 'qwen2_moe':
self.shared_expert = MLP(
hidden_size=config.hidden_size,
ffn_hidden_size=config.moe_shared_expert_intermediate_size,
hidden_act=config.hidden_act,
dtype=dtype,
bias=False,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode)
self.shared_expert_gate = RowLinear(config.hidden_size,
1,
bias=False,
dtype=dtype,
tp_group=None,
tp_size=1)
# Qwen's real inter_size depends on qwen_type
if self.config.qwen_type == 'qwen':
intermediate_size = config.intermediate_size // 2
elif self.config.qwen_type == 'qwen2_moe':
intermediate_size = config.moe_intermediate_size
else:
intermediate_size = config.intermediate_size
self.mlp = ClsMLP(hidden_size=config.hidden_size,
ffn_hidden_size=intermediate_size,
hidden_act=config.hidden_act,
dtype=dtype,
bias=config.mlp_bias,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=dtype)
def forward(
self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params,
)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
shared_output = None
if self.config.qwen_type == 'qwen2_moe':
shared_output = self.shared_expert(
hidden_states, lora_layer_params=lora_layer_params)
if self.shared_expert_gate is not None:
gate_lora_params = None
if lora_layer_params is not None:
gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_router")
shared_output = sigmoid(
self.shared_expert_gate(hidden_states,
gate_lora_params)) * shared_output
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
if shared_output is not None:
hidden_states = hidden_states + shared_output
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class QWenModel(Module):
def __init__(self, config: QWenConfig) -> None:
super().__init__()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(QWenDecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class QWenForCausalLM(DecoderModelForCausalLM):
config_class = QWenConfig
def __init__(self, config: QWenConfig):
transformer = QWenModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
if config.qwen_type == 'qwen':
self.trtllm_modules_to_hf_modules = {
"attn_qkv": "c_attn",
"attn_dense": "attn.c_proj",
"mlp_h_to_4h": "w2",
"mlp_4h_to_h": "mlp.c_proj",
"mlp_gate": "w1",
}
elif config.qwen_type == 'qwen2_moe':
self.trtllm_modules_to_hf_modules = copy.copy(
get_default_trtllm_modules_to_hf_modules())
self.trtllm_modules_to_hf_modules.update({
"mlp_h_to_4h":
"mlp.shared_expert.gate_proj",
"mlp_4h_to_h":
"mlp.shared_expert.down_proj",
"mlp_gate":
"mlp.shared_expert.up_proj",
"mlp_router":
"mlp.shared_expert_gate",
"moe_h_to_4h":
"mlp.experts.gate_proj",
"moe_4h_to_h":
"mlp.experts.down_proj",
"moe_gate":
"mlp.experts.up_proj",
})
else:
self.trtllm_modules_to_hf_modules = None
super().__init__(config, transformer, lm_head)
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
use_hf_gptq_checkpoint=False,
**kwargs):
''' Create a QWenForCausalLM object from give parameters
'''
import transformers
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
assert hf_model_or_dir is not None
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_model = hf_model_or_dir
hf_config_or_dir = hf_model.config
else:
hf_model_dir = hf_model_or_dir
hf_config_or_dir = hf_model_or_dir
config = QWenConfig.from_hugging_face(hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if not use_preloading:
hf_model = load_hf_qwen(hf_model_dir, load_model_on_cpu)
if use_hf_gptq_checkpoint:
weights = load_weights_from_hf_gptq_model(hf_model, config)
else:
weights = load_weights_from_hf_model(hf_model, config)
check_share_embedding(weights, config)
model = QWenForCausalLM(config)
model.load(weights)
return model
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto'
return plugin_config
@classmethod
def quantize(
cls,
hf_model_dir: str,
output_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
*,
calib_dataset='cnn_dailymail',
calib_batches=512,
calib_batch_size=1,
calib_max_seq_length=512,
random_seed=1234,
tokenizer_max_seq_length=2048,
**kwargs,
):
DEFAULT_MODELOPT_FLOW = [
QuantAlgo.W4A16_AWQ, QuantAlgo.FP8, QuantAlgo.W8A8_SQ_PER_CHANNEL,
QuantAlgo.W4A8_AWQ
]
config = QWenConfig.from_hugging_face(hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if quant_config.quant_algo in DEFAULT_MODELOPT_FLOW:
super().quantize(hf_model_dir,
output_dir,
dtype=config.dtype,
mapping=config.mapping,
quant_config=config.quantization,
calib_dataset=calib_dataset,
calib_batches=calib_batches,
calib_batch_size=calib_batch_size,
calib_max_seq_length=calib_max_seq_length,
random_seed=random_seed,
tokenizer_max_seq_length=tokenizer_max_seq_length)
else:
# non-modelopt, the legacy TRT-LLM native quantization algorithm:
# sq, int4/int8 weights only, int8 kv cache
NATIVE_QUANT_FLOW = [QuantAlgo.W4A16, QuantAlgo.W8A16, None
] + W8A8_SQ_PLUGIN_LIST
is_valid_native_quant = (quant_config.quant_algo in NATIVE_QUANT_FLOW) and \
(quant_config.kv_cache_quant_algo in [QuantAlgo.INT8, None])
assert quant_config.quant_algo is not None or quant_config.kv_cache_quant_algo is not None, \
"There is no point to call the quantize function if both quant_algo and kv_cache_quant_algo is None"
assert is_valid_native_quant, f"Internal error: shall call Modelopt for this quantization {quant_config}"
from . import convert
convert.quantize(hf_model_dir,
output_dir,
config=config,
calib_dataset=calib_dataset)
def use_lora(self, lora_config: LoraConfig):
use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)