TensorRT-LLMs/tensorrt_llm/models/bert/config.py
2024-12-24 15:58:43 +08:00

118 lines
4.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
import transformers
from ..._utils import torch_dtype_to_str
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig
class BERTConfig(PretrainedConfig):
def __init__(self,
*,
is_roberta: bool = False,
type_vocab_size,
pad_token_id=None,
num_labels=None,
**kwargs):
self.is_roberta = is_roberta
self.type_vocab_size = type_vocab_size
self.pad_token_id = pad_token_id
self.num_labels = num_labels
super().__init__(**kwargs)
def to_dict(self):
output = super().to_dict()
output['is_roberta'] = self.is_roberta
output['type_vocab_size'] = self.type_vocab_size
output['pad_token_id'] = self.pad_token_id
output['num_labels'] = self.num_labels
return output
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config_dir = str(hf_config_or_dir)
hf_config = transformers.AutoConfig.from_pretrained(hf_config_dir)
num_key_value_heads = getattr(hf_config, "num_key_value_heads",
hf_config.num_attention_heads)
head_dim = getattr(
hf_config, "head_dim",
hf_config.hidden_size // hf_config.num_attention_heads)
head_size = getattr(hf_config, "kv_channels", head_dim)
num_labels = getattr(hf_config, "num_labels", None)
if (hf_config.position_embedding_type == 'absolute'):
position_embedding_type = 'learned_absolute'
else:
raise NotImplementedError(
f"{hf_config.position_embedding_type} hasn't been supported")
if hf_config.model_type == "bert":
is_roberta = False
else:
is_roberta = True
if dtype == 'auto':
dtype = getattr(hf_config, 'torch_dtype', None)
if dtype is None:
dtype = 'float16'
if isinstance(dtype, torch.dtype):
dtype = torch_dtype_to_str(dtype)
if dtype == 'float32':
dtype = 'float16'
return cls(
architecture=hf_config.architectures[0],
dtype=dtype,
hidden_size=hf_config.hidden_size,
num_hidden_layers=hf_config.num_hidden_layers,
num_attention_heads=hf_config.num_attention_heads,
vocab_size=hf_config.vocab_size,
hidden_act=hf_config.hidden_act,
logits_dtype='float32',
norm_epsilon=hf_config.layer_norm_eps,
position_embedding_type=position_embedding_type,
max_position_embeddings=hf_config.max_position_embeddings,
num_key_value_heads=num_key_value_heads,
intermediate_size=hf_config.intermediate_size,
head_size=head_size,
quantization=quant_config,
mapping=mapping,
#BERT model args
is_roberta=is_roberta,
type_vocab_size=hf_config.type_vocab_size,
pad_token_id=hf_config.pad_token_id,
num_labels=num_labels,
**kwargs)