mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> open source f8c0381a2bc50ee2739c3d8c2be481b31e5f00bd (#2736) Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> Add note for blackwell (#2742) Update the docs to workaround the extra-index-url issue (#2744) update README.md (#2751) Fix github io pages (#2761) Update
372 lines
16 KiB
Python
372 lines
16 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
from typing import TYPE_CHECKING, Any, Dict, Optional
|
|
|
|
from tensorrt_llm.models.gemma.convert import (QuantizeModifiers, Weights,
|
|
load_gemma_weights_from_hf_model,
|
|
non_modelopt_quantize_if_needed)
|
|
from tensorrt_llm.quantization.mode import (MODELOPT_FLOW_QUANTIZATIONS,
|
|
QuantAlgo)
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import (AllReduceFusionOp, AllReduceParams, Tensor, cast,
|
|
recv, send)
|
|
from ...layers import (Attention, AttentionMaskType, AttentionParams,
|
|
ColumnLinear, Embedding, GatedMLP, KeyValueCacheParams,
|
|
LoraParams, PositionEmbeddingType, RmsNorm)
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
QuantConfig, save_checkpoint, save_config)
|
|
from .config import GemmaConfig
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
from .config import HfConfigOrDir
|
|
|
|
|
|
class GemmaDecoderLayer(Module):
|
|
|
|
def __init__(self, config: GemmaConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
self.local_layer_idx = layer_idx - layers_range[0]
|
|
|
|
q_scaling = 1.0
|
|
max_attn_value = 0.0
|
|
|
|
gemma2_config = config.gemma2_config()
|
|
if gemma2_config:
|
|
q_scaling = math.sqrt(
|
|
gemma2_config.query_pre_attn_scalar) / math.sqrt(
|
|
config.head_size)
|
|
max_attn_value = config.attn_logit_softcapping or 0.0
|
|
|
|
self.attention = Attention(
|
|
local_layer_idx=self.local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
attention_head_size=config.head_size,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=config.dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=config.attn_bias,
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
rotary_embedding_base=config.rotary_base,
|
|
rotary_embedding_scaling=config.rotary_scaling,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
quant_mode=config.quant_mode,
|
|
q_scaling=q_scaling,
|
|
max_attn_value=max_attn_value,
|
|
)
|
|
|
|
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
|
|
|
|
self.mlp = GatedMLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=mlp_hidden_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
bias=config.mlp_bias,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
quant_mode=config.quant_mode)
|
|
|
|
if self.config.inter_layernorms:
|
|
self.pre_feedforward_layernorm = RmsNorm(
|
|
normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
self.post_feedforward_layernorm = RmsNorm(
|
|
normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
attention_mask: Optional[Tensor] = None,
|
|
use_cache: bool = False,
|
|
kv_cache_params: Optional[KeyValueCacheParams] = None,
|
|
attention_params: Optional[AttentionParams] = None,
|
|
lora_layer_params: Optional[LoraParams] = None,
|
|
next_layer_input_layernorm_args=None):
|
|
# assert not (
|
|
# default_net().plugin_config.reduce_fusion and self.has_residual_mlp
|
|
# ), "Custom all reduce and residual mlp can't be enabled at the same time."
|
|
if default_net(
|
|
).plugin_config.reduce_fusion and self.local_layer_idx > 0:
|
|
hidden_states, residual = hidden_states #FIXME:AN need to check if appropriate residual value is hidden state is pulled out.
|
|
else:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
norm_before_bmm1=True,
|
|
lora_layer_params=lora_layer_params,
|
|
all_reduce_params=AllReduceParams(
|
|
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_PREPOST_NORM
|
|
if default_net().plugin_config.reduce_fusion else
|
|
AllReduceFusionOp.NONE,
|
|
residual=residual,
|
|
norm_weight=self.post_layernorm.weight.value,
|
|
norm_pre_residual_weight=self.pre_feedforward_layernorm.weight.
|
|
value if self.config.inter_layernorms else None,
|
|
eps=self.post_layernorm.eps))
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
if default_net().plugin_config.reduce_fusion:
|
|
hidden_states, residual = attention_output
|
|
else:
|
|
if self.config.inter_layernorms:
|
|
attention_output = self.post_layernorm(attention_output)
|
|
hidden_states = residual + attention_output
|
|
residual = hidden_states
|
|
if self.config.inter_layernorms:
|
|
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
|
else:
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
if next_layer_input_layernorm_args is not None:
|
|
hidden_states = self.mlp(
|
|
hidden_states,
|
|
lora_layer_params=lora_layer_params,
|
|
all_reduce_params=AllReduceParams(
|
|
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_PREPOST_NORM
|
|
if default_net().plugin_config.reduce_fusion else
|
|
AllReduceFusionOp.NONE,
|
|
residual=residual,
|
|
norm_weight=next_layer_input_layernorm_args[0],
|
|
norm_pre_residual_weight=self.post_feedforward_layernorm.
|
|
weight.value,
|
|
eps=next_layer_input_layernorm_args[1]))
|
|
else:
|
|
hidden_states = self.mlp(hidden_states,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
if self.config.inter_layernorms:
|
|
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class GemmaModel(Module):
|
|
|
|
def __init__(self, config: GemmaConfig) -> None:
|
|
super().__init__()
|
|
|
|
self.mapping = config.mapping
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = DecoderLayerList(GemmaDecoderLayer, config)
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
self.hidden_size = config.hidden_size
|
|
|
|
def forward(self,
|
|
input_ids,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None):
|
|
|
|
ptuning_args = [
|
|
prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if prompt_embedding_table is not None else []
|
|
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
|
|
hidden_states = cast(hidden_states * math.sqrt(self.hidden_size),
|
|
hidden_states.dtype)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
hidden_states = self.layers.forward(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_params=lora_params,
|
|
)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class GemmaForCausalLM(DecoderModelForCausalLM):
|
|
config_class = GemmaConfig
|
|
|
|
def __init__(self, config: GemmaConfig):
|
|
transformer = GemmaModel(config)
|
|
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
self.quant_mode = config.quant_mode
|
|
self.mapping = config.mapping
|
|
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
@staticmethod
|
|
def _load_gemma_weights_from_hf(hf_model_dir: "HfConfigOrDir",
|
|
trt_llm_config: GemmaConfig, *,
|
|
load_model_on_cpu: bool) -> Weights:
|
|
"""`AutoModelForCausalLM.from_pretrained` will parse the correct gemma, whether Gemma or Gemma2 or future versions."""
|
|
import transformers
|
|
hf_gemma = transformers.AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
device_map="cpu" if load_model_on_cpu else "auto",
|
|
torch_dtype='auto',
|
|
)
|
|
weights = load_gemma_weights_from_hf_model(hf_gemma, trt_llm_config)
|
|
del hf_gemma
|
|
return weights
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_model_dir: "HfConfigOrDir",
|
|
dtype='float16',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
load_model_on_cpu: bool = True,
|
|
**kwargs):
|
|
config = GemmaConfig.from_hugging_face(hf_config_or_dir=hf_model_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
model = GemmaForCausalLM(config)
|
|
weights = cls._load_gemma_weights_from_hf(
|
|
hf_model_dir, config, load_model_on_cpu=load_model_on_cpu)
|
|
model.load(weights)
|
|
return model
|
|
|
|
NATIVE_QUANT_FLOW = {
|
|
QuantAlgo.W8A16, QuantAlgo.W4A16,
|
|
QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN,
|
|
QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN,
|
|
QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN,
|
|
QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
|
|
}
|
|
|
|
@classmethod
|
|
def assert_valid_quant_algo(cls, quant_algo: Optional[QuantAlgo]):
|
|
allowed_quant_values = {
|
|
None
|
|
} | cls.NATIVE_QUANT_FLOW | MODELOPT_FLOW_QUANTIZATIONS
|
|
assert quant_algo in allowed_quant_values, f"{quant_algo} isn't in the allowed `QuantAlgo` values for this model: {allowed_quant_values}"
|
|
|
|
@classmethod
|
|
def quantize(
|
|
cls,
|
|
hf_model_dir: str,
|
|
output_dir: str,
|
|
dtype: str = 'float16',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
*,
|
|
gemma_config_kwargs: Dict[str, Any] = None,
|
|
**quantize_kwargs: Dict[str, Any],
|
|
):
|
|
config = GemmaConfig.from_hugging_face(hf_model_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**(gemma_config_kwargs or {}))
|
|
|
|
quant_algo = config.quantization.quant_algo
|
|
if quant_algo is None and config.quantization.kv_cache_quant_algo is None:
|
|
raise ValueError(
|
|
"There is no point in calling `quantize()` if both `quant_algo` and `kv_cache_quant_algo` are `None`"
|
|
)
|
|
elif quant_algo in MODELOPT_FLOW_QUANTIZATIONS:
|
|
super().quantize(hf_model_dir,
|
|
output_dir,
|
|
dtype=config.dtype,
|
|
mapping=config.mapping,
|
|
quant_config=config.quantization,
|
|
**quantize_kwargs)
|
|
elif quant_algo in cls.NATIVE_QUANT_FLOW:
|
|
save_config(config, output_dir=output_dir, log=True)
|
|
for config in config.for_each_rank():
|
|
hf_weights = cls._load_gemma_weights_from_hf(
|
|
hf_model_dir, config)
|
|
ranked_weights = non_modelopt_quantize_if_needed(
|
|
hf_weights,
|
|
model_dir=hf_model_dir,
|
|
quantize_modifiers=QuantizeModifiers(),
|
|
trt_llm_config=config)
|
|
save_checkpoint(
|
|
output_dir=output_dir,
|
|
weights=ranked_weights,
|
|
rank=config.mapping.rank,
|
|
)
|
|
del hf_weights
|
|
else:
|
|
cls.assert_valid_quant_algo(quant_algo)
|