TensorRT-LLMs/tests/unittest/_torch/test_autotuner.py
Yukun He c678774c99
feat: Apply the new torch-flow compatible AutoTuner to both Fused MoE and NVFP4 Linear operators. (#3151)
* Several optimizations and fixings on the Autotuner.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Apply the new Python side Autotuner on current linear for nvFP4 data type.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Apply the new Python side Autotuner on MoE op
* Remove routers from cache key to improve inference perf
* Prevent unnecessary code profiling. Use do_preparation keyword to select which part should be executed during before evaluating any tactic.
* Remove try-catch inside moe profiling process.
* Move default tactic -1 to 0 transforms in cpp runner.
* Revise relavant tests.
* Predefined the bucketizing strategy for fused_moe

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Add specific_profile support for AutoTuner to bypass the standard cache search process for perf optimization
* Add specific_profile for moe
* Add specific profile for linear

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Fixing and revising according to reviewer's suggestions.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Use lru_cache for inference pref optimization.
* Revert gen_custom_cache_key feature

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Replace runner with runner id to achieve a serializable cache.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Code clean up and minor fixings.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Move all tunable runners and custom ops into torch_custom_ops.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Treat min_latency_mode as a independent dynamic tensor. Modify get_valid_tactics to suit for it.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

---------

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-04-08 14:28:36 +08:00

330 lines
11 KiB
Python

from typing import List
import torch
import tensorrt_llm._torch.autotuner as autotuner
from tensorrt_llm._torch.autotuner import (AutoTuner, DynamicDim, FakeTensor,
OptimizationProfile, StaticDim,
TunableRunner, TuningConfig,
autotune)
from tensorrt_llm._torch.utils import (get_power_of_2_num_tokens_buckets,
next_positive_power_of_2)
from tensorrt_llm.bindings.internal.runtime import delay_kernel
from tensorrt_llm.logger import logger
def test_multi_dynamic_dims():
tuner = autotuner.AutoTuner()
x = torch.rand([5, 1024])
w = torch.rand([7, 19])
dynamic_tensors = (
(0, 0, ([1, 3, 5], lambda x: x // 2)),
(0, 1, ([16, 24, 1024], lambda x: x // 2)),
(1, 1, ([3, 7, 9], lambda x: x // 2)),
)
profiles = tuner._optimization_profiles(dynamic_tensors,
constraints=(),
inputs=[x, w])
assert len(profiles) == 27
sample_0 = OptimizationProfile(shapes=[[
DynamicDim(min=0, opt=1, max=5),
DynamicDim(min=0, opt=16, max=1024)
], [StaticDim(val=7), DynamicDim(min=0, opt=3, max=19)]])
sample_26 = OptimizationProfile(shapes=[[
DynamicDim(min=0, opt=5, max=5),
DynamicDim(min=0, opt=1024, max=1024)
], [StaticDim(val=7), DynamicDim(min=0, opt=9, max=19)]])
assert sample_0 == profiles[0]
assert sample_26 == profiles[-1]
# For cache testing
"""
tactic 0 is better when x.shape[0] <= M // 2
tactic 1 is better when x.shape[0] > M // 2
"""
M = 32
# add sleep to simulate bad perf
def gemm_0(x, w):
if x.shape[0] > M // 2:
delay_kernel(10000, torch.cuda.current_stream())
return x @ w
def gemm_1(x, w):
if x.shape[0] <= M // 2:
delay_kernel(10000, torch.cuda.current_stream())
return x @ w
def gemm_fallback(x, w) -> torch.Tensor:
# always the slowest
delay_kernel(100000, torch.cuda.current_stream())
return x @ w
def check_gemm_tactic_valid(tactic: int, m: int) -> bool:
# TODO: CI is not stable for this test. delay_kernel can not guarantee the profiling result.
# We need to find a more determinist way to test this.
if m <= M // 2:
if tactic != 0:
logger.warning(
f"Expect tactic 0 but got {tactic} when m ({m}) is small.")
elif m <= M:
if tactic != 1:
logger.warning(
f"Expect tactic 1 but got {tactic} when m ({m}) is large.")
else:
if tactic != -1:
logger.warning(
f"Expect fallback tactic (-1) but got {tactic} when m ({m}) > {M}."
)
class GemmRunner(TunableRunner):
def get_valid_tactics(self, inputs: List[FakeTensor]) -> List[int]:
# The simulated delay is not deterministic, so we need to return specific tactics here
return [-1, 0, 1]
def forward(self,
/,
inputs: List[torch.Tensor],
*,
tactic: int = -1) -> torch.Tensor:
assert tactic in [-1, 0, 1]
return [gemm_0, gemm_1, gemm_fallback][tactic](*inputs)
@torch.library.custom_op("autotuner_test::get_best_gemm_tactic",
mutates_args=())
def get_best_gemm_tactic(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
runners = [GemmRunner()]
tunner = AutoTuner.get()
tuning_config = TuningConfig(
dynamic_tensors=((0, 0, (get_power_of_2_num_tokens_buckets,
next_positive_power_of_2)), ))
runner, tactic = tunner.choose_one(
"autotuner_test::get_best_gemm_tactic",
runners,
tuning_config,
[x, w],
)
return torch.tensor(tactic)
@get_best_gemm_tactic.register_fake
def _(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
return torch.empty(1)
def test_autotuner_cache_basic():
w = torch.randn(64, 128)
# tuning with largest M
AutoTuner.get().clear_cache()
with autotune():
torch.ops.autotuner_test.get_best_gemm_tactic(torch.randn(M, 64), w)
m = M * 2
while m >= 1:
best_tactic = torch.ops.autotuner_test.get_best_gemm_tactic(
torch.randn(m, 64), w)
check_gemm_tactic_valid(best_tactic, m)
m //= 2
def test_autotuner_try_block():
class PartialCrashedRunner(TunableRunner):
def get_valid_tactics(self, inputs: List[FakeTensor]) -> List[int]:
return [-1, 0, 1]
def forward(self,
/,
inputs: List[torch.Tensor],
*,
tactic: int = -1) -> torch.Tensor:
assert tactic in [-1, 0, 1]
if tactic == 1:
raise Exception(
"For profiling try block test: Tactic 1 is not suitable. Crash happens."
)
return [gemm_0, gemm_1, gemm_fallback][tactic](*inputs)
x, w = torch.randn(M, 64), torch.randn(64, 128)
runners = [PartialCrashedRunner()]
tunner = AutoTuner.get()
tuning_config = TuningConfig(
dynamic_tensors=((0, 0, (get_power_of_2_num_tokens_buckets,
next_positive_power_of_2)), ))
with autotune():
runner, tactic = tunner.choose_one("test_autotuner_try_block", runners,
tuning_config, [x, w])
m = M // 2
while m >= 1:
_, tactic = tunner.choose_one("test_autotuner_try_block", runners,
tuning_config, [torch.randn(m, 64), w])
assert tactic in [
-1, 0
], f"Expect only tactic -1, 0 being chosen, but got tactic {tactic}."
m //= 2
@torch.library.custom_op("autotuner_test::recursive_get_best_gemm_tactic",
mutates_args=())
def recursive_get_best_gemm_tactic(x: torch.Tensor, w1: torch.Tensor,
w2: torch.Tensor) -> torch.Tensor:
# Only the first custom_op is tuned, the second one uses the tuned result in cache
tactic_1 = get_best_gemm_tactic(x, w1)
tactic_2 = get_best_gemm_tactic(x, w2)
return torch.stack([tactic_1, tactic_2])
@recursive_get_best_gemm_tactic.register_fake
def _(x: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor) -> torch.Tensor:
return torch.empty(2)
def test_recursive_autotuner():
x, w1, w2 = torch.randn(M, 64), torch.randn(64, 128), torch.randn(64, 128)
AutoTuner.get().clear_cache()
with autotune():
torch.ops.autotuner_test.recursive_get_best_gemm_tactic(
torch.randn(M, 64), w1, w2)
m = M * 2
while m >= 1:
t1, t2 = torch.ops.autotuner_test.recursive_get_best_gemm_tactic(
torch.randn(m, 64), w1, w2)
check_gemm_tactic_valid(t1, m)
check_gemm_tactic_valid(t2, m)
m //= 2
class GemmRunnerWithAttributes(TunableRunner):
def __init__(self, block_size: int, num_warps: int):
self.block_size = block_size
self.num_warps = num_warps
def get_valid_tactics(self, inputs: List[FakeTensor]) -> List[int]:
return [-1, 0, 1]
def forward(self,
/,
inputs: List[torch.Tensor],
*,
tactic: int = -1) -> torch.Tensor:
assert tactic in [-1, 0, 1]
return [gemm_0, gemm_1, gemm_fallback][tactic](*inputs)
def test_multiple_runners_different_attributes():
"""Test that runners with different attributes get different cache entries"""
x, w = torch.randn(16, 64), torch.randn(64, 128)
# Create runners with different attributes
runner_0 = GemmRunnerWithAttributes(block_size=128, num_warps=4)
runner_1 = GemmRunnerWithAttributes(block_size=256, num_warps=8)
runners = [runner_0, runner_1]
tuning_config = TuningConfig(
dynamic_tensors=((0, 0, (get_power_of_2_num_tokens_buckets,
next_positive_power_of_2)), ))
# Do tuning
with autotune():
tuner = AutoTuner.get()
runner_a, tactic_a = tuner.choose_one("test_multiple_runners", runners,
tuning_config, [x, w])
# Verify different cache keys are generated
shapes = (x.shape, w.shape)
cache_key_0 = tuner.get_cache_key(
"test_multiple_runners", runner_0,
tuner._find_nearest_profile(tuning_config.dynamic_tensors, (),
shapes))
cache_key_1 = tuner.get_cache_key(
"test_multiple_runners", runner_1,
tuner._find_nearest_profile(tuning_config.dynamic_tensors, (),
shapes))
assert cache_key_0 != cache_key_1, "Runners with different attributes should have different cache keys"
def test_multiple_dynamic_shapes_cache():
"""Test that different dynamic shape combinations are properly cached"""
w = torch.randn(64, 128)
runners = [GemmRunner()]
# Define dynamic ranges for both dimensions
tuning_config = TuningConfig(
dynamic_tensors=(
(0, 0, ((3, 4, 5), lambda x: x)), # First dim: 3 values
(1, 1, ((64, 128, 256, 512), lambda x: x)), # Second dim: 4 values
), )
# Do tuning with a sample input
x = torch.randn(3, 64)
with autotune():
tuner = AutoTuner.get()
runner, tactic = tuner.choose_one("test_multiple_dynamic_shapes",
runners, tuning_config, [x, w])
# Verify cache size - should have 12 entries (3x4 combinations)
cache_entries = [
k for k in tuner.profiling_cache.keys()
if k[0] == "test_multiple_dynamic_shapes"
]
assert len(cache_entries) == 12, \
f"Expected 12 cache entries for 3x4 shape combinations, got {len(cache_entries)}"
def test_autotuner_statistics():
"""Test that AutoTuner properly collects and reports statistics"""
# Reset statistics before test
AutoTuner.get().reset_statistics()
# Setup test data
w = torch.randn(64, 128)
x_large = torch.randn(M * 2, 64) # Will use fallback
x_medium = torch.randn(M, 64) # Will use tactic 1
# First do tuning with largest input
AutoTuner.get().clear_cache()
with autotune():
# Only size <= M will be tuned
torch.ops.autotuner_test.get_best_gemm_tactic(x_medium, w)
# Generate a cache miss
torch.ops.autotuner_test.get_best_gemm_tactic(x_large, w)
# Get statistics
stats = AutoTuner.get().stats
# Check cache misses during tuning
assert stats.cache_misses == 1, "Should have exact one cache misses"
# Check that we collected profile configs
op_name = "autotuner_test::get_best_gemm_tactic"
assert op_name in stats.cache_miss_config_collection, "Should have collected configs for the operation"
assert len(stats.cache_miss_config_collection[op_name]
) == 1, "Should have exactly one profile config"
assert next(iter(stats.cache_miss_config_collection[op_name])) == (
x_large.shape, w.shape), "Should have the correct missed profile config"
# Reset and verify statistics are cleared
AutoTuner.get().reset_statistics()
stats = AutoTuner.get().stats
assert stats.cache_misses == 0, "Statistics should be reset"
assert len(stats.cache_miss_config_collection
) == 0, "Config collection should be empty after reset"
assert len(stats.tuned_op_total_configs
) == 0, "Operation statistics should be reset"