TensorRT-LLMs/cpp/tests/layers/baseSamplingLayerTest.h
Kaiyu Xie 0f041b7b57
Update TensorRT-LLM (#1098)
* Update TensorRT-LLM

* update submodule

* Remove unused binaries
2024-02-18 15:48:08 +08:00

162 lines
5.3 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <gtest/gtest.h>
#include <memory>
#include "tensorrt_llm/layers/samplingLayer.h"
#include "tensorrt_llm/layers/topKSamplingLayer.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/kernels/penaltyKernels.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/common/cudaAllocator.h"
#include "tensorrt_llm/common/tensorConversion.h"
#include "tensorrt_llm/common/tllmException.h"
namespace tensorrt_llm::tests::layers::sampling
{
constexpr float EPSILON = 1e-20f;
template <typename T>
void computeProb(T* probs, const T* logits, int batchSize, int vocabSize)
{
// Compute the log probability from logits.
// logits = batchSize x vocabSize.
// probs = softmax(logits) (softmax along with vocab dimension)
// float is used for either T=float or half, since operations of half are
// not fully supported in a host function.
for (int bidx = 0; bidx < batchSize; ++bidx)
{
float maxval = -FLT_MAX;
for (int i = 0; i < vocabSize; ++i)
{
float logit = static_cast<float>(logits[bidx * vocabSize + i]);
if (logit > maxval)
{
maxval = logit;
}
}
float sum = 0.0f;
for (int i = 0; i < vocabSize; ++i)
{
sum += expf(static_cast<float>(logits[bidx * vocabSize + i]) - maxval);
}
for (int i = 0; i < vocabSize; ++i)
{
int idx = bidx * vocabSize + i;
float logit = static_cast<float>(logits[idx]) - maxval;
probs[idx] = static_cast<T>(expf(logit) / (sum + EPSILON));
}
}
}
struct SamplingParams
{
std::vector<uint32_t> topKs;
std::vector<float> topPs;
std::vector<float> temperatures;
std::vector<float> repetitionPenalties;
std::vector<float> presencePenalties;
std::vector<float> frequencyPenalties;
std::vector<int32_t> minLengths;
std::vector<float> decay;
std::vector<float> minTopP;
std::vector<int32_t> topPResetIds;
bool useBias = false;
};
template <typename T>
class BaseSamplingLayerTest : public testing::Test
{
protected:
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
using BufferPtr = tensorrt_llm::runtime::IBuffer::SharedPtr;
int32_t seed = 0;
const static uint64_t mMaxSeed = 32;
int32_t const mBatchSize = 6;
int32_t const mMaxBatchSize = 2 * mBatchSize;
int32_t const mBeamWidth = 1;
int32_t const mBatchBeam = mBatchSize * mBeamWidth;
int32_t const mVocabSize = 8;
int32_t const mVocabSizePadded = mVocabSize;
int32_t const mMaxInputLen = 0; // has no effect.
int32_t const mMaxOutputLen = 4;
int32_t const mMaxSeqLen = mMaxInputLen + mMaxOutputLen;
int32_t mEndId = mVocabSize;
bool mComputeProbs = false;
TensorPtr mLogitsDevice;
TensorPtr mContextLengthDevice;
TensorPtr mSeqLengthsDevice;
TensorPtr mFinishedDevice;
TensorPtr mOutputIdsDevice;
TensorPtr mEndIdsDevice;
TensorPtr mIdsPtrHost;
TensorPtr mBatchSlots;
TensorPtr mEmbeddingBiasHost;
TensorPtr mEmbeddingBiasDevice;
TensorPtr mCumLogProbsDevice;
TensorPtr mCurandStatesDevice;
TensorPtr mPenaltyWorkspaceDevice;
BufferPtr mSamplingWorkspaceDevice;
const tensorrt_llm::common::DataType data_type = tensorrt_llm::common::getTensorType<T>();
// Order is important because we pass mAllocator to mSamplingLayer and it is used in destructor
std::shared_ptr<tensorrt_llm::runtime::CudaStream> mStream;
std::shared_ptr<tensorrt_llm::runtime::BufferManager> mBufferManager;
std::shared_ptr<tensorrt_llm::common::CudaAllocator> mAllocator;
std::shared_ptr<tensorrt_llm::layers::BaseSamplingLayer<T>> mSamplingLayer;
std::vector<T> mTestLogitsInit;
void setup(uint64_t seed, SamplingParams const& params);
virtual void initLayer(SamplingParams const& params) = 0;
typename tensorrt_llm::layers::BaseSamplingLayer<T>::ForwardParams createInputTensors(int32_t step);
tensorrt_llm::layers::DecodingOutputParams createOutputTensors();
void batchCopy(int32_t step);
bool checkResult(int32_t* outputIds, std::vector<std::set<int32_t>>& expectedIds);
public:
void runTest(std::vector<std::set<int32_t>> expectedOutputIds, SamplingParams const& params, int32_t endId = -1);
};
typedef testing::Types<float, half> FloatAndHalfTypes;
} // namespace tensorrt_llm::tests::layers::sampling