mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
162 lines
5.3 KiB
C++
162 lines
5.3 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <memory>
|
|
|
|
#include "tensorrt_llm/layers/samplingLayer.h"
|
|
#include "tensorrt_llm/layers/topKSamplingLayer.h"
|
|
#include "tensorrt_llm/layers/topPSamplingLayer.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
|
|
#include "tensorrt_llm/kernels/penaltyKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
#include "tensorrt_llm/runtime/runtimeKernels.h"
|
|
#include "tensorrt_llm/runtime/tllmLogger.h"
|
|
|
|
#include "tensorrt_llm/common/cudaAllocator.h"
|
|
#include "tensorrt_llm/common/tensorConversion.h"
|
|
#include "tensorrt_llm/common/tllmException.h"
|
|
|
|
namespace tensorrt_llm::tests::layers::sampling
|
|
{
|
|
|
|
constexpr float EPSILON = 1e-20f;
|
|
|
|
template <typename T>
|
|
void computeProb(T* probs, const T* logits, int batchSize, int vocabSize)
|
|
{
|
|
// Compute the log probability from logits.
|
|
// logits = batchSize x vocabSize.
|
|
// probs = softmax(logits) (softmax along with vocab dimension)
|
|
// float is used for either T=float or half, since operations of half are
|
|
// not fully supported in a host function.
|
|
for (int bidx = 0; bidx < batchSize; ++bidx)
|
|
{
|
|
float maxval = -FLT_MAX;
|
|
for (int i = 0; i < vocabSize; ++i)
|
|
{
|
|
float logit = static_cast<float>(logits[bidx * vocabSize + i]);
|
|
if (logit > maxval)
|
|
{
|
|
maxval = logit;
|
|
}
|
|
}
|
|
float sum = 0.0f;
|
|
for (int i = 0; i < vocabSize; ++i)
|
|
{
|
|
sum += expf(static_cast<float>(logits[bidx * vocabSize + i]) - maxval);
|
|
}
|
|
for (int i = 0; i < vocabSize; ++i)
|
|
{
|
|
int idx = bidx * vocabSize + i;
|
|
float logit = static_cast<float>(logits[idx]) - maxval;
|
|
probs[idx] = static_cast<T>(expf(logit) / (sum + EPSILON));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct SamplingParams
|
|
{
|
|
std::vector<uint32_t> topKs;
|
|
std::vector<float> topPs;
|
|
std::vector<float> temperatures;
|
|
std::vector<float> repetitionPenalties;
|
|
std::vector<float> presencePenalties;
|
|
std::vector<float> frequencyPenalties;
|
|
std::vector<int32_t> minLengths;
|
|
std::vector<float> decay;
|
|
std::vector<float> minTopP;
|
|
std::vector<int32_t> topPResetIds;
|
|
bool useBias = false;
|
|
};
|
|
|
|
template <typename T>
|
|
class BaseSamplingLayerTest : public testing::Test
|
|
{
|
|
protected:
|
|
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
|
|
using BufferPtr = tensorrt_llm::runtime::IBuffer::SharedPtr;
|
|
|
|
int32_t seed = 0;
|
|
const static uint64_t mMaxSeed = 32;
|
|
int32_t const mBatchSize = 6;
|
|
int32_t const mMaxBatchSize = 2 * mBatchSize;
|
|
int32_t const mBeamWidth = 1;
|
|
int32_t const mBatchBeam = mBatchSize * mBeamWidth;
|
|
int32_t const mVocabSize = 8;
|
|
int32_t const mVocabSizePadded = mVocabSize;
|
|
|
|
int32_t const mMaxInputLen = 0; // has no effect.
|
|
int32_t const mMaxOutputLen = 4;
|
|
int32_t const mMaxSeqLen = mMaxInputLen + mMaxOutputLen;
|
|
int32_t mEndId = mVocabSize;
|
|
|
|
bool mComputeProbs = false;
|
|
|
|
TensorPtr mLogitsDevice;
|
|
TensorPtr mContextLengthDevice;
|
|
TensorPtr mSeqLengthsDevice;
|
|
TensorPtr mFinishedDevice;
|
|
TensorPtr mOutputIdsDevice;
|
|
TensorPtr mEndIdsDevice;
|
|
TensorPtr mIdsPtrHost;
|
|
TensorPtr mBatchSlots;
|
|
|
|
TensorPtr mEmbeddingBiasHost;
|
|
TensorPtr mEmbeddingBiasDevice;
|
|
|
|
TensorPtr mCumLogProbsDevice;
|
|
|
|
TensorPtr mCurandStatesDevice;
|
|
TensorPtr mPenaltyWorkspaceDevice;
|
|
BufferPtr mSamplingWorkspaceDevice;
|
|
|
|
const tensorrt_llm::common::DataType data_type = tensorrt_llm::common::getTensorType<T>();
|
|
|
|
// Order is important because we pass mAllocator to mSamplingLayer and it is used in destructor
|
|
std::shared_ptr<tensorrt_llm::runtime::CudaStream> mStream;
|
|
std::shared_ptr<tensorrt_llm::runtime::BufferManager> mBufferManager;
|
|
std::shared_ptr<tensorrt_llm::common::CudaAllocator> mAllocator;
|
|
std::shared_ptr<tensorrt_llm::layers::BaseSamplingLayer<T>> mSamplingLayer;
|
|
|
|
std::vector<T> mTestLogitsInit;
|
|
|
|
void setup(uint64_t seed, SamplingParams const& params);
|
|
|
|
virtual void initLayer(SamplingParams const& params) = 0;
|
|
|
|
typename tensorrt_llm::layers::BaseSamplingLayer<T>::ForwardParams createInputTensors(int32_t step);
|
|
|
|
tensorrt_llm::layers::DecodingOutputParams createOutputTensors();
|
|
|
|
void batchCopy(int32_t step);
|
|
bool checkResult(int32_t* outputIds, std::vector<std::set<int32_t>>& expectedIds);
|
|
|
|
public:
|
|
void runTest(std::vector<std::set<int32_t>> expectedOutputIds, SamplingParams const& params, int32_t endId = -1);
|
|
};
|
|
|
|
typedef testing::Types<float, half> FloatAndHalfTypes;
|
|
|
|
} // namespace tensorrt_llm::tests::layers::sampling
|