mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
923 lines
49 KiB
C++
923 lines
49 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
#include "tensorrt_llm/runtime/gptJsonConfig.h"
|
|
#include "tensorrt_llm/runtime/gptModelConfig.h"
|
|
#include "tensorrt_llm/runtime/iBuffer.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/loraManager.h"
|
|
#include "tensorrt_llm/runtime/loraModule.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include "tensorrt_llm/runtime/utils/numpyUtils.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace fs = std::filesystem;
|
|
|
|
namespace
|
|
{
|
|
auto const TEST_RESOURCE_PATH = fs::path{TOP_LEVEL_DIR} / "cpp/tests/resources/data";
|
|
auto const TEST_SOURCE_LORA_TP1 = TEST_RESOURCE_PATH / "lora-test-weights-tp1/source.npy";
|
|
auto const TEST_DEST_LORA_TP1 = TEST_RESOURCE_PATH / "lora-test-weights-tp1/target.npy";
|
|
auto const TEST_KEYS_LORA_TP1 = TEST_RESOURCE_PATH / "lora-test-weights-tp1/config.npy";
|
|
auto const TEST_SOURCE_LORA_TP2 = TEST_RESOURCE_PATH / "lora-test-weights-tp2/source.npy";
|
|
auto const TEST_DEST_LORA_TP2 = TEST_RESOURCE_PATH / "lora-test-weights-tp2/target.npy";
|
|
auto const TEST_KEYS_LORA_TP2 = TEST_RESOURCE_PATH / "lora-test-weights-tp2/config.npy";
|
|
auto const TEST_MODEL_CONFIG = TEST_RESOURCE_PATH / "test_model_lora_config.json";
|
|
} // namespace
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
using TensorPtr = ITensor::SharedPtr;
|
|
|
|
class LoraManagerTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init)
|
|
{
|
|
protected:
|
|
LoraManagerTest()
|
|
: mModelConfig(1, 2, 1, 4, nvinfer1::DataType::kFLOAT)
|
|
{
|
|
}
|
|
|
|
void SetUp() override
|
|
{
|
|
mStream = std::make_unique<CudaStream>();
|
|
mManager = std::make_unique<BufferManager>(mStream);
|
|
|
|
mWorldConfig = WorldConfig(2);
|
|
|
|
mModelConfig.setLoraModules(LoraModule::createLoraModules({"attn_dense", "attn_qkv"}, 4, 4, 1, 1, 2, 2));
|
|
}
|
|
|
|
std::unique_ptr<BufferManager> mManager;
|
|
BufferManager::CudaStreamPtr mStream;
|
|
GptModelConfig mModelConfig;
|
|
WorldConfig mWorldConfig;
|
|
};
|
|
|
|
TEST_F(LoraManagerTest, moduleParsing)
|
|
{
|
|
auto jsonConfig = GptJsonConfig::parse(TEST_MODEL_CONFIG);
|
|
auto loraModules = jsonConfig.getModelConfig().getLoraModules();
|
|
|
|
std::vector<LoraModule> expectedModules{
|
|
LoraModule(LoraModule::ModuleType::kATTN_QKV, 2048, 6144, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_Q, 2048, 2048, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_K, 2048, 2048, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_V, 2048, 2048, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_DENSE, 2048, 2048, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_GATE, 2048, 4096, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 2048, 4096, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 4096, 2048, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 2048, 6144, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 2048, 2048, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 2048, 2048, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 2048, 2048, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 2048, 2048, false, true, 1, -1),
|
|
};
|
|
ASSERT_EQ(expectedModules.size(), loraModules.size());
|
|
for (size_t i = 0; i < expectedModules.size(); ++i)
|
|
{
|
|
EXPECT_EQ(expectedModules[i].value(), loraModules[i].value());
|
|
EXPECT_EQ(expectedModules[i].name(), loraModules[i].name());
|
|
EXPECT_EQ(expectedModules[i].inDim(), loraModules[i].inDim());
|
|
EXPECT_EQ(expectedModules[i].outDim(), loraModules[i].outDim());
|
|
EXPECT_EQ(expectedModules[i].inTpSplitDim(), loraModules[i].inTpSplitDim());
|
|
EXPECT_EQ(expectedModules[i].outTpSplitDim(), loraModules[i].outTpSplitDim());
|
|
}
|
|
}
|
|
|
|
TEST_F(LoraManagerTest, formatTensors_tp1)
|
|
{
|
|
LoraManager loraManager;
|
|
auto modelConfig = GptModelConfig(0, 2, 1, 16, nvinfer1::DataType::kFLOAT);
|
|
modelConfig.setMlpHiddenSize(32);
|
|
auto worldConfig = WorldConfig(1, 1, 0);
|
|
std::vector<LoraModule> modules{
|
|
LoraModule(LoraModule::ModuleType::kATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 32, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_GATE, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
};
|
|
modelConfig.setLoraModules(modules);
|
|
loraManager.create(modelConfig, worldConfig, *mManager);
|
|
|
|
TensorPtr loraReqWeights = utils::loadNpy(*mManager, TEST_SOURCE_LORA_TP1.string(), MemoryType::kGPU);
|
|
loraReqWeights->unsqueeze(0);
|
|
TensorPtr loraReqKeys = utils::loadNpy(*mManager, TEST_KEYS_LORA_TP1.string(), MemoryType::kCPU);
|
|
loraReqKeys->unsqueeze(0);
|
|
TensorPtr loraTargetTensors = utils::loadNpy(*mManager, TEST_DEST_LORA_TP1.string(), MemoryType::kCPU);
|
|
|
|
loraManager.formatTaskTensors(loraReqWeights, loraReqKeys, modelConfig, worldConfig, *mManager);
|
|
TensorPtr hostWeights = mManager->copyFrom(*loraReqWeights, MemoryType::kCPU);
|
|
mManager->getStream().synchronize();
|
|
|
|
auto srcPtr = bufferCast<float>(*hostWeights);
|
|
auto destPtr = bufferCast<float>(*loraTargetTensors);
|
|
|
|
for (SizeType i = 0; i < loraReqWeights->getSize(); ++i)
|
|
{
|
|
EXPECT_FLOAT_EQ(srcPtr[i], destPtr[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(LoraManagerTest, formatTensors_tp2)
|
|
{
|
|
LoraManager loraManager;
|
|
auto modelConfig = GptModelConfig(0, 2, 1, 16, nvinfer1::DataType::kFLOAT);
|
|
modelConfig.setMlpHiddenSize(32);
|
|
auto worldConfig = WorldConfig(2, 1, 0);
|
|
std::vector<LoraModule> modules{
|
|
LoraModule(LoraModule::ModuleType::kATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 32, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_GATE, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
};
|
|
modelConfig.setLoraModules(modules);
|
|
loraManager.create(modelConfig, worldConfig, *mManager);
|
|
|
|
TensorPtr loraReqWeights = utils::loadNpy(*mManager, TEST_SOURCE_LORA_TP2.string(), MemoryType::kGPU);
|
|
loraReqWeights->unsqueeze(0);
|
|
TensorPtr loraReqKeys = utils::loadNpy(*mManager, TEST_KEYS_LORA_TP2.string(), MemoryType::kCPU);
|
|
loraReqKeys->unsqueeze(0);
|
|
TensorPtr loraTargetTensors = utils::loadNpy(*mManager, TEST_DEST_LORA_TP2.string(), MemoryType::kCPU);
|
|
|
|
loraManager.formatTaskTensors(loraReqWeights, loraReqKeys, modelConfig, worldConfig, *mManager);
|
|
TensorPtr hostWeights = mManager->copyFrom(*loraReqWeights, MemoryType::kCPU);
|
|
mManager->getStream().synchronize();
|
|
|
|
auto srcPtr = bufferCast<float>(*hostWeights);
|
|
auto destPtr = bufferCast<float>(*loraTargetTensors);
|
|
|
|
for (SizeType i = 0; i < loraReqWeights->getSize(); ++i)
|
|
{
|
|
EXPECT_FLOAT_EQ(srcPtr[i], destPtr[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(LoraManagerTest, LoraManager_addTask)
|
|
{
|
|
LoraManager manager;
|
|
manager.create(mModelConfig, mWorldConfig, *mManager);
|
|
|
|
std::vector<int32_t> taskNLayers{4, 6};
|
|
std::vector<int32_t> taskMod{0, 1};
|
|
std::vector<int32_t> taskSizes{16, 8};
|
|
|
|
for (SizeType taskNum = 0; taskNum < static_cast<SizeType>(taskSizes.size()); ++taskNum)
|
|
{
|
|
|
|
auto mod = taskMod[taskNum];
|
|
auto nLayers = taskNLayers[taskNum];
|
|
auto taskSize = taskSizes[taskNum];
|
|
auto taskName = taskNum;
|
|
// bs=1
|
|
// nbModules=1
|
|
// nbLayers=4
|
|
// adapterSize=16
|
|
// Hi=128
|
|
// Ho=3*128
|
|
auto weightsShape = ITensor::makeShape({1, 1 * nLayers, taskSize * 128 + taskSize * 3 * 128});
|
|
auto weights = mManager->cpu(weightsShape, nvinfer1::DataType::kFLOAT);
|
|
auto weightsPtr = bufferCast<float>(*weights);
|
|
std::fill_n(weightsPtr, weights->getSize(), 1.f * taskNum);
|
|
|
|
auto keysShape = ITensor::makeShape({1, 1 * nLayers, 3});
|
|
|
|
auto keys = mManager->cpu(keysShape, nvinfer1::DataType::kINT32);
|
|
auto keysPtr = bufferCast<int32_t>(*keys);
|
|
SizeType off = 0;
|
|
for (SizeType i = 0; i < nLayers; ++i)
|
|
{
|
|
keysPtr[off++] = mod;
|
|
keysPtr[off++] = i;
|
|
keysPtr[off++] = taskSize;
|
|
}
|
|
|
|
weights->squeeze(0);
|
|
keys->squeeze(0);
|
|
|
|
manager.addTask(taskName, std::move(weights), std::move(keys));
|
|
}
|
|
|
|
for (SizeType taskNum = 0; taskNum < static_cast<SizeType>(taskSizes.size()); ++taskNum)
|
|
{
|
|
auto mod = taskMod[taskNum];
|
|
auto nLayers = taskNLayers[taskNum];
|
|
auto taskSize = taskSizes[taskNum];
|
|
auto taskName = taskNum;
|
|
auto modName = taskNum == 0 ? "attn_qkv" : "attn_q";
|
|
|
|
auto [taskWeights, taskKeys] = manager.getTask(taskName);
|
|
auto taskKeysPtr = bufferCast<int32_t>(*taskKeys);
|
|
|
|
auto numWeights = static_cast<SizeType>(taskWeights->getSize());
|
|
auto hostWeightsPtr = bufferCast<float>(*taskWeights);
|
|
|
|
for (SizeType i = 0; i < numWeights; ++i)
|
|
{
|
|
EXPECT_FLOAT_EQ(1.f * taskNum, hostWeightsPtr[i]);
|
|
}
|
|
|
|
SizeType off = 0;
|
|
for (SizeType i = 0; i < taskNLayers[taskNum]; ++i)
|
|
{
|
|
EXPECT_EQ(taskKeysPtr[off++], taskMod[taskNum]);
|
|
EXPECT_EQ(taskKeysPtr[off++], i);
|
|
EXPECT_EQ(taskKeysPtr[off++], taskSizes[taskNum]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void checkLoraTensors(LoraManager const& loraManager, std::vector<int64_t> const& targetPtrs,
|
|
TensorPtr weightsPtrs, std::vector<int32_t> const& targetAdapterSizes, TensorPtr adapterSizes,
|
|
GptModelConfig const& modelConfig, WorldConfig const& worldConfig, std::vector<LoraModule> const& modules,
|
|
SizeType numModules, SizeType numLayers, SizeType numSeqs)
|
|
{
|
|
auto adapterSizesPtr = bufferCast<SizeType>(*adapterSizes);
|
|
auto weightsPtrsPtr = bufferCast<int64_t>(*weightsPtrs);
|
|
ASSERT_EQ(targetPtrs.size(), weightsPtrs->getSize());
|
|
ASSERT_EQ(targetAdapterSizes.size(), adapterSizes->getSize());
|
|
auto firstLayerId
|
|
= modelConfig.getNbLayers(worldConfig.getPipelineParallelism()) * worldConfig.getPipelineParallelRank();
|
|
LoraManager::TensorMap expectedTensors;
|
|
|
|
for (SizeType m = 0; m < numModules; ++m)
|
|
{
|
|
TensorPtr modSlice = ITensor::slice(weightsPtrs, m, 1);
|
|
TensorPtr modAdapterSlice = ITensor::slice(adapterSizes, m, 1);
|
|
modSlice->squeeze(0);
|
|
modAdapterSlice->squeeze(0);
|
|
for (SizeType l = 0; l < numLayers; ++l)
|
|
{
|
|
TensorPtr layerSlice = ITensor::slice(modSlice, l, 1);
|
|
TensorPtr layerAdapterSlice = ITensor::slice(modAdapterSlice, l, 1);
|
|
layerSlice->squeeze(0);
|
|
layerAdapterSlice->squeeze(0);
|
|
auto weightsFieldName
|
|
= std::string(modules.at(m).name()) + "_lora_weights_pointers_" + std::to_string(l + firstLayerId);
|
|
expectedTensors.insert_or_assign(weightsFieldName, layerSlice);
|
|
auto adapterSizeFieldName
|
|
= std::string(modules.at(m).name()) + "_lora_ranks_" + std::to_string(l + firstLayerId);
|
|
expectedTensors.insert_or_assign(adapterSizeFieldName, layerAdapterSlice);
|
|
for (SizeType i = 0; i < numSeqs; ++i)
|
|
{
|
|
SizeType adapterSizeOff = common::flat_index3(m, l, i, numLayers, numSeqs);
|
|
EXPECT_EQ(targetAdapterSizes[adapterSizeOff], adapterSizesPtr[adapterSizeOff]);
|
|
SizeType inPtrIdx = common::flat_index4(m, l, i, 0, numLayers, numSeqs, 2);
|
|
SizeType outPtrIdx = common::flat_index4(m, l, i, 1, numLayers, numSeqs, 2);
|
|
EXPECT_EQ(targetPtrs[inPtrIdx], weightsPtrsPtr[inPtrIdx]);
|
|
EXPECT_EQ(targetPtrs[outPtrIdx], weightsPtrsPtr[outPtrIdx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
LoraManager::TensorMap inputTensors;
|
|
loraManager.insertInputTensors(inputTensors, weightsPtrs, adapterSizes, modelConfig, worldConfig);
|
|
|
|
ASSERT_EQ(expectedTensors.size(), inputTensors.size());
|
|
for (auto& [fieldName, tensor] : expectedTensors)
|
|
{
|
|
ASSERT_NE(inputTensors.find(fieldName), inputTensors.end());
|
|
auto expectedTensor = expectedTensors.find(fieldName)->second;
|
|
auto actualTensor = inputTensors.find(fieldName)->second;
|
|
ITensor::shapeEquals(expectedTensor->getShape(), actualTensor->getShape());
|
|
if (expectedTensor->getDataType() == nvinfer1::DataType::kINT64)
|
|
{
|
|
auto expT = bufferCast<int64_t>(*expectedTensor);
|
|
auto actT = bufferCast<int64_t>(*actualTensor);
|
|
for (size_t i = 0; i < expectedTensor->getSize(); ++i)
|
|
{
|
|
EXPECT_EQ(expT[i], actT[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto expT = bufferCast<int32_t>(*expectedTensor);
|
|
auto actT = bufferCast<int32_t>(*actualTensor);
|
|
for (size_t i = 0; i < expectedTensor->getSize(); ++i)
|
|
{
|
|
EXPECT_EQ(expT[i], actT[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(LoraManagerTest, fillInputTensors_tp1_pp1)
|
|
{
|
|
LoraManager loraManager;
|
|
auto modelConfig = GptModelConfig(0, 2, 1, 16, nvinfer1::DataType::kFLOAT);
|
|
modelConfig.setMlpHiddenSize(32);
|
|
auto worldConfig = WorldConfig(1, 1, 0);
|
|
std::vector<LoraModule> modules{
|
|
LoraModule(LoraModule::ModuleType::kATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_GATE, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 32, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
};
|
|
modelConfig.setLoraModules(modules);
|
|
loraManager.create(modelConfig, worldConfig, *mManager);
|
|
auto numModules = static_cast<SizeType>(modelConfig.getLoraModules().size());
|
|
auto numLayers = static_cast<SizeType>(modelConfig.getNbLayers());
|
|
SizeType numSeqs = 4;
|
|
TensorPtr weightsPtrs
|
|
= mManager->cpu(ITensor::makeShape({numModules, numLayers, numSeqs, 2}), nvinfer1::DataType::kINT64);
|
|
TensorPtr adapterSizes
|
|
= mManager->cpu(ITensor::makeShape({numModules, numLayers, numSeqs}), nvinfer1::DataType::kINT32);
|
|
|
|
mManager->setZero(*weightsPtrs);
|
|
mManager->setZero(*adapterSizes);
|
|
|
|
SizeType numContextRequests = 1;
|
|
std::vector<uint64_t> reqIds{1, 2, 3};
|
|
std::vector<SizeType> reqBeamWidth{1, 2, 1};
|
|
std::vector<bool> loraEnabled{true, true, false};
|
|
|
|
TensorPtr loraReqKeys = utils::loadNpy(*mManager, TEST_KEYS_LORA_TP1.string(), MemoryType::kCPU);
|
|
TensorPtr loraWeights = utils::loadNpy(*mManager, TEST_DEST_LORA_TP1.string(), MemoryType::kGPU);
|
|
|
|
loraManager.addTask(1, loraWeights, loraReqKeys);
|
|
loraManager.addTask(2, loraWeights, loraReqKeys);
|
|
|
|
loraManager.fillInputTensors(
|
|
weightsPtrs, adapterSizes, reqIds, reqBeamWidth, loraEnabled, numContextRequests, modelConfig, worldConfig);
|
|
|
|
// set in order litest in modelConfig
|
|
SizeType attnQkvOff = 1;
|
|
SizeType attnDense = 0;
|
|
|
|
auto inputWeightsPtrs = bufferCast<float>(*loraWeights);
|
|
|
|
auto adapterSizesPtr = bufferCast<SizeType>(*adapterSizes);
|
|
auto weightsPtrsPtr = bufferCast<int64_t>(*weightsPtrs);
|
|
|
|
auto weightsRowSize = loraWeights->getShape().d[1];
|
|
|
|
std::vector<int32_t> targetAdapterSizes{
|
|
8, 8, 8, 0, // attn_qkv layer 0
|
|
8, 8, 8, 0, // attn_qkv layer 1
|
|
4, 4, 4, 0, // attn_q layer 0
|
|
4, 4, 4, 0, // attn_q layer 1
|
|
4, 4, 4, 0, // attn_k layer 0
|
|
4, 4, 4, 0, // attn_k layer 1
|
|
4, 4, 4, 0, // attn_v layer 0
|
|
4, 4, 4, 0, // attn_v layer 1
|
|
8, 8, 8, 0, // attn_dense layer 0
|
|
8, 8, 8, 0, // attn_dense layer 1
|
|
8, 8, 8, 0, // mlp_h_to_4h layer 0
|
|
8, 8, 8, 0, // mlp_h_to_4h layer 1
|
|
8, 8, 8, 0, // mlp_gate layer 0
|
|
8, 8, 8, 0, // mlp_gate layer 1
|
|
8, 8, 8, 0, // mlp_4h_to_h layer 0
|
|
8, 8, 8, 0, // mlp_4h_to_h layer 1
|
|
8, 8, 8, 0, // cross_attn_qkv layer 0
|
|
8, 8, 8, 0, // cross_attn_qkv layer 1
|
|
4, 4, 4, 0, // cross_attn_q layer 0
|
|
4, 4, 4, 0, // cross_attn_q layer 1
|
|
4, 4, 4, 0, // cross_attn_k layer 0
|
|
4, 4, 4, 0, // cross_attn_k layer 1
|
|
4, 4, 4, 0, // cross_attn_v layer 0
|
|
4, 4, 4, 0, // cross_attn_v layer 1
|
|
8, 8, 8, 0, // cross_attn_dense layer 0
|
|
8, 8, 8, 0, // cross_attn_dense layer 1
|
|
};
|
|
|
|
std::vector<int64_t> targetPtrs{
|
|
// attn_qkv layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(0, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(0, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(0, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(0, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(0, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(0, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_qkv layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_q layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(2, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(2, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(2, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(2, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(2, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(2, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_q layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_k layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(4, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(4, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(4, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(4, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(4, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(4, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_k layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_v layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(6, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(6, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(6, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(6, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(6, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(6, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_v layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_dense layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(8, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(8, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(8, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(8, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(8, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(8, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_dense layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_h_to_4h layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(10, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(10, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(10, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(10, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(10, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(10, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_h_to_4h layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_gate layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(14, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(14, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(14, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(14, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(14, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(14, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_gate layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_4h_to_h layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(12, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(12, 8 * 32, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(12, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(12, 8 * 32, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(12, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(12, 8 * 32, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_4h_to_h layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, 8 * 32, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, 8 * 32, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, 8 * 32, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_qkv layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(16, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(16, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(16, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(16, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(16, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(16, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_qkv layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_q layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(18, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(18, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(18, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(18, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(18, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(18, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_q layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_k layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(20, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(20, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(20, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(20, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(20, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(20, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_k layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_v layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(22, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(22, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(22, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(22, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(22, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(22, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_v layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, 4 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_dense layer 0
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(24, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(24, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(24, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(24, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(24, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(24, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_dense layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 0, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
};
|
|
|
|
checkLoraTensors(loraManager, targetPtrs, weightsPtrs, targetAdapterSizes, adapterSizes, modelConfig, worldConfig,
|
|
modules, numModules, numLayers, numSeqs);
|
|
}
|
|
|
|
TEST_F(LoraManagerTest, fillInputTensors_tp2_pp2)
|
|
{
|
|
LoraManager loraManager;
|
|
auto modelConfig = GptModelConfig(0, 2, 1, 16, nvinfer1::DataType::kFLOAT);
|
|
modelConfig.setMlpHiddenSize(32);
|
|
auto worldConfig = WorldConfig(2, 2, 3); // tpRank = 1, ppRank = 1
|
|
std::vector<LoraModule> modules{
|
|
LoraModule(LoraModule::ModuleType::kATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_GATE, 16, 32, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 32, 16, false, true, 1, -1),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 16, 3 * 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 16, 16, false, true, -1, 0),
|
|
LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 16, 16, false, true, 1, -1),
|
|
};
|
|
modelConfig.setLoraModules(modules);
|
|
loraManager.create(modelConfig, worldConfig, *mManager);
|
|
auto numModules = static_cast<SizeType>(modelConfig.getLoraModules().size());
|
|
auto numLayers = static_cast<SizeType>(modelConfig.getNbLayers(2));
|
|
SizeType numSeqs = 4;
|
|
TensorPtr weightsPtrs
|
|
= mManager->cpu(ITensor::makeShape({numModules, numLayers, numSeqs, 2}), nvinfer1::DataType::kINT64);
|
|
TensorPtr adapterSizes
|
|
= mManager->cpu(ITensor::makeShape({numModules, numLayers, numSeqs}), nvinfer1::DataType::kINT32);
|
|
|
|
mManager->setZero(*weightsPtrs);
|
|
mManager->setZero(*adapterSizes);
|
|
|
|
SizeType numContextRequests = 1;
|
|
std::vector<uint64_t> reqIds{1, 2, 3};
|
|
std::vector<SizeType> reqBeamWidth{1, 2, 1};
|
|
std::vector<bool> loraEnabled{true, true, false};
|
|
|
|
TensorPtr loraReqKeys = utils::loadNpy(*mManager, TEST_KEYS_LORA_TP2.string(), MemoryType::kCPU);
|
|
TensorPtr loraWeights = utils::loadNpy(*mManager, TEST_DEST_LORA_TP2.string(), MemoryType::kGPU);
|
|
|
|
loraManager.addTask(1, loraWeights, loraReqKeys);
|
|
loraManager.addTask(2, loraWeights, loraReqKeys);
|
|
|
|
loraManager.fillInputTensors(
|
|
weightsPtrs, adapterSizes, reqIds, reqBeamWidth, loraEnabled, numContextRequests, modelConfig, worldConfig);
|
|
|
|
// set in order litest in modelConfig
|
|
SizeType attnQkvOff = 1;
|
|
SizeType attnDense = 0;
|
|
|
|
auto inputWeightsPtrs = bufferCast<float>(*loraWeights);
|
|
|
|
auto adapterSizesPtr = bufferCast<SizeType>(*adapterSizes);
|
|
auto weightsPtrsPtr = bufferCast<int64_t>(*weightsPtrs);
|
|
|
|
auto weightsRowSize = loraWeights->getShape().d[1];
|
|
|
|
std::vector<int32_t> targetAdapterSizes{
|
|
8, 8, 8, 0, // attn_qkv layer 1
|
|
4, 4, 4, 0, // attn_q layer 1
|
|
4, 4, 4, 0, // attn_k layer 1
|
|
4, 4, 4, 0, // attn_v layer 1
|
|
8, 8, 8, 0, // attn_dense layer 1
|
|
8, 8, 8, 0, // mlp_h_to_4h layer 1
|
|
8, 8, 8, 0, // mlp_gate layer 1
|
|
8, 8, 8, 0, // mlp_4h_to_h layer 1
|
|
8, 8, 8, 0, // cross_attn_qkv layer 1
|
|
4, 4, 4, 0, // cross_attn_q layer 1
|
|
4, 4, 4, 0, // cross_attn_k layer 1
|
|
4, 4, 4, 0, // cross_attn_v layer 1
|
|
8, 8, 8, 0, // cross_attn_dense layer 1
|
|
};
|
|
|
|
SizeType attnQkvInRank1Off = 0;
|
|
SizeType attnQkvOutRank1Off = (8 * 16) + (4 * (3 * 16));
|
|
|
|
SizeType attnQInRank1Off = 0;
|
|
SizeType attnQOutRank1Off = (4 * 16) + (2 * 16);
|
|
|
|
SizeType mlphto4hInRank1Off = 0;
|
|
SizeType mlphto4hOutRank1Off = (8 * 16) + (4 * 32);
|
|
|
|
SizeType mlp4htohInRank1Off = (4 * 32);
|
|
SizeType mlp4htohOutRank1Off = (8 * 32);
|
|
|
|
std::vector<int64_t> targetPtrs{
|
|
// attn_qkv layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, attnQkvInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, attnQkvOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, attnQkvInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, attnQkvOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, attnQkvInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(1, attnQkvOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_q layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(3, attnQOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_k layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(5, attnQOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_v layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(7, attnQOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// attn_dense layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(9, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_h_to_4h layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, mlphto4hInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, mlphto4hOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, mlphto4hInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, mlphto4hOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, mlphto4hInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(11, mlphto4hOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_gate layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, mlphto4hInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, mlphto4hOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, mlphto4hInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, mlphto4hOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, mlphto4hInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(15, mlphto4hOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// mlp_4h_to_h layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, mlp4htohInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, mlp4htohOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, mlp4htohInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, mlp4htohOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, mlp4htohInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(13, mlp4htohOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_qkv layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, attnQkvInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, attnQkvOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, attnQkvInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, attnQkvOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, attnQkvInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(17, attnQkvOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_q layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(19, attnQOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_k layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(21, attnQOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_v layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, attnQOutRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, attnQInRank1Off, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(23, attnQOutRank1Off, weightsRowSize)),
|
|
0,
|
|
0,
|
|
|
|
// cross_attn_dense layer 1
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 8 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 4 * 16, weightsRowSize)),
|
|
reinterpret_cast<int64_t>(inputWeightsPtrs + common::flat_index2(25, 8 * 16, weightsRowSize)),
|
|
0,
|
|
0,
|
|
};
|
|
|
|
checkLoraTensors(loraManager, targetPtrs, weightsPtrs, targetAdapterSizes, adapterSizes, modelConfig, worldConfig,
|
|
modules, numModules, numLayers, numSeqs);
|
|
}
|
|
} // namespace tensorrt_llm::runtime
|