TensorRT-LLMs/examples/multimodal/run.py
Kaiyu Xie 655524dd82
Update TensorRT-LLM (#1168)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-27 17:37:34 +08:00

406 lines
16 KiB
Python

import argparse
import os
import sys
from pathlib import Path
import numpy as np
import requests
import tensorrt as trt
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (AutoConfig, AutoProcessor, AutoTokenizer,
Blip2Processor, NougatProcessor, NougatTokenizerFast)
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm._utils import torch_to_numpy
from tensorrt_llm.runtime import ModelRunner, Session, TensorInfo
sys.path.append(str(Path(__file__).parent.parent))
from enc_dec.run import TRTLLMEncDecModel
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_new_tokens', type=int, default=30)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--visual_engine_dir',
type=str,
default=None,
help='Directory containing visual TRT engines')
parser.add_argument('--llm_engine_dir',
type=str,
default=None,
help='Directory containing TRT-LLM engines')
parser.add_argument('--hf_model_dir',
type=str,
default=None,
help="Directory containing tokenizer")
parser.add_argument(
'--decoder_llm',
action='store_true',
help='Whether LLM is decoder-only or an encoder-decoder variant?')
parser.add_argument('--blip2_encoder',
action='store_true',
help='Whether visual encoder is a BLIP2 model')
parser.add_argument('--nougat',
action='store_true',
help='Run nougat pipeline')
parser.add_argument('--input_text',
type=str,
default='Question: which city is this? Answer:',
help='Text prompt to LLM')
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--run_profiling',
action='store_true',
help='Profile runtime over several iterations')
parser.add_argument('--check_accuracy',
action='store_true',
help='Check correctness of text output')
return parser.parse_args()
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
class MultiModalModel:
def __init__(self, args):
self.args = args
runtime_rank = tensorrt_llm.mpi_rank()
device_id = runtime_rank % torch.cuda.device_count()
torch.cuda.set_device(device_id)
self.device = "cuda:%d" % (device_id)
self.stream = torch.cuda.Stream(torch.cuda.current_device())
torch.cuda.set_stream(self.stream)
self.init_image_encoder()
self.init_tokenizer()
self.init_llm()
def init_tokenizer(self):
if self.args.nougat:
self.tokenizer = NougatTokenizerFast.from_pretrained(
self.args.hf_model_dir)
else:
self.tokenizer = AutoTokenizer.from_pretrained(
self.args.hf_model_dir, use_fast=False, use_legacy=False)
self.tokenizer.padding_side = "right"
self.tokenizer.pad_token = self.tokenizer.eos_token
def init_image_encoder(self):
vision_encoder_path = os.path.join(self.args.visual_engine_dir,
'visual_encoder.engine')
logger.info(f'Loading engine from {vision_encoder_path}')
with open(vision_encoder_path, 'rb') as f:
engine_buffer = f.read()
logger.info(f'Creating session from engine {vision_encoder_path}')
self.visual_encoder_session = Session.from_serialized_engine(
engine_buffer)
def init_llm(self):
if self.args.decoder_llm:
self.model = ModelRunner.from_dir(self.args.llm_engine_dir,
rank=tensorrt_llm.mpi_rank(),
debug_mode=False,
stream=self.stream)
self.model_config = self.model.session._model_config
self.runtime_mapping = self.model.session.mapping
else:
self.model = TRTLLMEncDecModel.from_engine(
self.args.hf_model_dir.split('/')[-1],
self.args.llm_engine_dir,
skip_encoder=self.args.nougat,
debug_mode=False,
stream=self.stream)
if args.nougat:
self.model_config = self.model.decoder_model_config
self.runtime_mapping = self.model.decoder_runtime_mapping
else:
self.model_config = self.model.encoder_model_config
self.runtime_mapping = self.model.encoder_runtime_mapping
config = AutoConfig.from_pretrained(self.args.hf_model_dir)
decoder_start_id = config.decoder_start_token_id
if decoder_start_id is None:
decoder_start_id = self.tokenizer.bos_token_id
decoder_input_ids = torch.IntTensor([[decoder_start_id]
]).to(self.device)
batch_size = self.args.batch_size
self.decoder_input_ids = decoder_input_ids.repeat((batch_size, 1))
def generate(self, pre_prompt, post_prompt, image, max_new_tokens):
profiler.start("Generate")
profiler.start("Vision")
visual_features, visual_atts = self.get_visual_features(image)
profiler.stop("Vision")
pre_input_ids = self.tokenizer(pre_prompt,
return_tensors="pt",
padding=True).input_ids
if post_prompt[0] is not None:
post_input_ids = self.tokenizer(post_prompt,
return_tensors="pt",
padding=True).input_ids
length = pre_input_ids.shape[1] + post_input_ids.shape[
1] + visual_atts.shape[1]
else:
post_input_ids = None
length = pre_input_ids.shape[1] + visual_atts.shape[1]
input_lengths = torch.IntTensor([length] * args.batch_size).to(
torch.int32)
input_ids, ptuning_args = self.setup_fake_prompts(
visual_features, pre_input_ids, post_input_ids, input_lengths)
if self.args.decoder_llm and tensorrt_llm.mpi_rank() == 0:
prompt_table = ptuning_args[0]
prompt_table = torch.stack([prompt_table])
np.save('prompt_table.npy', torch_to_numpy(prompt_table))
tensorrt_llm.mpi_barrier() # Sync before reading prompt_table file
profiler.start("LLM")
if self.args.decoder_llm:
end_id = self.tokenizer.eos_token_id
if 'opt' in self.args.hf_model_dir and self.args.blip2_encoder:
# For BLIP2-OPT, model outputs a "\n" at the end.
# we avoid it by using newline as the end token
end_id = self.tokenizer.encode("\n",
add_special_tokens=False)[0]
output_ids = self.model.generate(
input_ids,
sampling_config=None,
prompt_table_path='prompt_table.npy',
max_new_tokens=max_new_tokens,
end_id=end_id,
pad_id=self.tokenizer.pad_token_id,
top_k=self.args.top_k,
num_beams=self.args.num_beams,
output_sequence_lengths=False,
return_dict=False)
else:
if args.nougat:
# Trim encoder input_ids to match visual features shape
ids_shape = (self.args.batch_size, visual_features.shape[1])
input_ids = torch.zeros(ids_shape, dtype=torch.int32)
output_ids = self.model.generate(
input_ids,
self.decoder_input_ids,
max_new_tokens,
num_beams=self.args.num_beams,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
debug_mode=False,
prompt_embedding_table=ptuning_args[0],
prompt_tasks=ptuning_args[1],
prompt_vocab_size=ptuning_args[2])
# Reset input_lengths to match decoder_input_ids
input_lengths = torch.ones(input_lengths.shape,
dtype=input_lengths.dtype)
profiler.stop("LLM")
if tensorrt_llm.mpi_rank() == 0:
# Extract a list of tensors of shape beam_width x output_ids.
output_beams_list = [
self.tokenizer.batch_decode(
output_ids[batch_idx, :, input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(self.args.batch_size)
]
stripped_text = [[
output_beams_list[batch_idx][beam_idx].strip()
for beam_idx in range(self.args.num_beams)
] for batch_idx in range(self.args.batch_size)]
profiler.stop("Generate")
return stripped_text
else:
profiler.stop("Generate")
return None
def get_visual_features(self, image):
visual_features = {'input': image.half()}
visual_output_info = self.visual_encoder_session.infer_shapes(
[TensorInfo('input', trt.DataType.HALF, image.shape)])
visual_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device=image.device)
for t in visual_output_info
}
ok = self.visual_encoder_session.run(visual_features, visual_outputs,
self.stream.cuda_stream)
assert ok, "Runtime execution failed for vision encoder session"
self.stream.synchronize()
image_embeds = visual_outputs['output']
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
return image_embeds, image_atts
def setup_fake_prompts(self, visual_features, pre_input_ids, post_input_ids,
input_lengths):
# Assemble fake prompts which points to image embedding actually
fake_prompt_id = torch.arange(
self.model_config.vocab_size, self.model_config.vocab_size +
visual_features.shape[0] * visual_features.shape[1])
fake_prompt_id = fake_prompt_id.reshape(visual_features.shape[0],
visual_features.shape[1])
if post_input_ids is not None:
input_ids = [pre_input_ids, fake_prompt_id, post_input_ids]
else:
input_ids = [fake_prompt_id, pre_input_ids]
input_ids = torch.cat(input_ids, dim=1).contiguous().to(torch.int32)
if self.args.decoder_llm or self.runtime_mapping.is_first_pp_rank():
ptuning_args = self.ptuning_setup(visual_features, input_ids,
input_lengths)
else:
ptuning_args = [None, None, None]
return input_ids, ptuning_args
def ptuning_setup(self, prompt_table, input_ids, input_lengths):
if prompt_table is not None:
task_vocab_size = torch.tensor(
[prompt_table.shape[1]],
dtype=torch.int32,
).cuda()
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
hidden_size = self.model_config.hidden_size * self.runtime_mapping.tp_size
assert prompt_table.shape[
1] == hidden_size, "Prompt table dimensions do not match hidden size"
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(
self.model_config.dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
if self.model_config.remove_input_padding:
tasks = torch.zeros([torch.sum(input_lengths)],
dtype=torch.int32).cuda()
if args.decoder_llm: tasks = tasks.unsqueeze(0)
else:
tasks = torch.zeros(input_ids.shape, dtype=torch.int32).cuda()
return [prompt_table, tasks, task_vocab_size]
def load_test_image(model_name):
if "nougat" in model_name:
filepath = hf_hub_download(
repo_id="hf-internal-testing/fixtures_docvqa",
filename="nougat_paper.png",
repo_type="dataset")
image = Image.open(filepath)
else:
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
image = Image.open(requests.get(img_url,
stream=True).raw).convert('RGB')
return image
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
runtime_rank = tensorrt_llm.mpi_rank()
image = load_test_image(args.hf_model_dir)
if args.blip2_encoder:
if 'opt-2.7b' in args.hf_model_dir:
model_type = 'Salesforce/blip2-opt-2.7b'
else:
model_type = 'Salesforce/blip2-flan-t5-xl'
processor = Blip2Processor.from_pretrained(model_type)
image = processor(image, args.input_text,
return_tensors="pt")['pixel_values']
pre_prompt = args.input_text
post_prompt = None
elif args.nougat:
processor = NougatProcessor.from_pretrained(args.hf_model_dir)
image = processor(image, return_tensors="pt")['pixel_values']
pre_prompt = args.input_text
post_prompt = None
else:
processor = AutoProcessor.from_pretrained(args.hf_model_dir)
image = processor(text=args.input_text,
images=image,
return_tensors="pt")['pixel_values']
pre_prompt = "USER:\n"
post_prompt = args.input_text + " ASSISTANT:"
# Repeat inputs to match batch size
pre_prompt = [pre_prompt] * args.batch_size
post_prompt = [post_prompt] * args.batch_size
image = image.expand(args.batch_size, -1, -1, -1).contiguous()
model = MultiModalModel(args)
image = image.to(model.device)
num_iters = 100 if args.run_profiling else 1
for _ in range(num_iters):
stripped_text = model.generate(pre_prompt, post_prompt, image,
args.max_new_tokens)
if runtime_rank == 0:
logger.info("---------------------------------------------------------")
if not args.nougat:
logger.info(f"\n[Q] {args.input_text}")
logger.info(f"\n[A] {stripped_text}")
if args.check_accuracy and not args.nougat:
assert stripped_text[0][0].lower() == 'singapore'
if args.run_profiling:
vision_latency = profiler.elapsed_time_in_sec("Vision") / num_iters
logger.info(
f'TensorRT vision encoder latency: {vision_latency} sec')
llm_latency = profiler.elapsed_time_in_sec("LLM") / num_iters
logger.info(f'TensorRT-LLM LLM latency: {llm_latency} sec')
generate_latency = profiler.elapsed_time_in_sec(
"Generate") / num_iters
logger.info(f'Generate latency: {generate_latency} sec')
logger.info("---------------------------------------------------------")