mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-23 20:23:08 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
304 lines
12 KiB
Python
304 lines
12 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import pad_vocab_size, str_dtype_to_torch
|
|
|
|
|
|
def torch_split(v, tensor_parallel, idx, dim=0):
|
|
if tensor_parallel == 1:
|
|
return v
|
|
else:
|
|
return (torch.split(v, v.shape[dim] // tensor_parallel,
|
|
dim=dim)[idx]).contiguous()
|
|
|
|
|
|
def convert_hf_phi(hf_model,
|
|
rank=0,
|
|
tensor_parallel=1,
|
|
dtype='float32',
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0):
|
|
|
|
hf_model_phi_block_names = [
|
|
"input_layernorm.weight",
|
|
"input_layernorm.bias",
|
|
"self_attn.dense.weight",
|
|
"self_attn.dense.bias",
|
|
"mlp.fc1.weight",
|
|
"mlp.fc1.bias",
|
|
"mlp.fc2.weight",
|
|
"mlp.fc2.bias",
|
|
]
|
|
|
|
tensorrt_llm_model_phi_block_names = [
|
|
"input_layernorm.weight",
|
|
"input_layernorm.bias",
|
|
"attention.dense.weight",
|
|
"attention.dense.bias",
|
|
"mlp.fc.weight",
|
|
"mlp.fc.bias",
|
|
"mlp.proj.weight",
|
|
"mlp.proj.bias",
|
|
]
|
|
|
|
weights = {}
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
hf_phi_state_dict = hf_model.state_dict()
|
|
|
|
# Embedding
|
|
# [vocab_size, hidden_size]
|
|
v = hf_phi_state_dict.get('model.embed_tokens.weight').to(torch_dtype).cpu()
|
|
if use_parallel_embedding:
|
|
v = torch_split(v, tensor_parallel, rank, sharding_dim)
|
|
weights['transformer.vocab_embedding.weight'] = v
|
|
|
|
# Decoder Layers
|
|
n_layer = hf_model.config.num_hidden_layers
|
|
for layer_idx in range(n_layer):
|
|
hf_prefix = f"model.layers.{layer_idx}."
|
|
tllm_prex = f'transformer.layers.{layer_idx}.'
|
|
|
|
# MLPs
|
|
for idx, hf_attr in enumerate(hf_model_phi_block_names):
|
|
v = hf_phi_state_dict.get(hf_prefix + hf_attr).to(torch_dtype).cpu()
|
|
|
|
if tensor_parallel > 1:
|
|
if 'self_attn.dense.weight' in hf_attr:
|
|
# [n=hidden_size, k=hidden_size] ->
|
|
# [n=hidden_size, k=hidden_size // tensor_parallel]
|
|
v = torch_split(v, tensor_parallel, rank, dim=1)
|
|
elif 'mlp.fc1.weight' in hf_attr:
|
|
# [hidden_size * 4, hidden_size] ->
|
|
# [hidden_size * 4 // tensor_parallel, hidden_size]
|
|
v = torch_split(v, tensor_parallel, rank, dim=0)
|
|
elif 'mlp.fc1.bias' in hf_attr:
|
|
# [hidden_size * 4] -> [hidden_size * 4 // tensor_parallel]
|
|
v = torch_split(v, tensor_parallel, rank, dim=0)
|
|
elif 'mlp.fc2.weight' in hf_attr:
|
|
# [hidden_size, hidden_size * 4] ->
|
|
# [hidden_size, hidden_size * 4 // tensor_parallel]
|
|
v = torch_split(v, tensor_parallel, rank, dim=1)
|
|
|
|
tllm_attr = tensorrt_llm_model_phi_block_names[idx]
|
|
weights[f'{tllm_prex}{tllm_attr}'] = v
|
|
|
|
# Attention QKV Linear
|
|
num_heads = hf_model.config.num_attention_heads
|
|
hidden_size = hf_model.config.hidden_size
|
|
hidden_size // num_heads
|
|
|
|
# [(num_heads x q)|(num_heads x k)|(num_heads x v), hidden_size]
|
|
q_weights = hf_phi_state_dict.get(hf_prefix + "self_attn.q_proj.weight")
|
|
k_weights = hf_phi_state_dict.get(hf_prefix + "self_attn.k_proj.weight")
|
|
v_weights = hf_phi_state_dict.get(hf_prefix + "self_attn.v_proj.weight")
|
|
q_bias = hf_phi_state_dict.get(hf_prefix + "self_attn.q_proj.bias")
|
|
k_bias = hf_phi_state_dict.get(hf_prefix + "self_attn.k_proj.bias")
|
|
v_bias = hf_phi_state_dict.get(hf_prefix + "self_attn.v_proj.bias")
|
|
qkv_weights = torch.cat((q_weights, k_weights, v_weights), dim=0)
|
|
qkv_bias = torch.cat((q_bias, k_bias, v_bias), dim=0)
|
|
|
|
qkv_weights = qkv_weights.reshape([hidden_size * 3, hidden_size])
|
|
qkv_bias = qkv_bias.reshape([hidden_size * 3])
|
|
|
|
if tensor_parallel > 1:
|
|
qkv_weights = qkv_weights.reshape(
|
|
3, hidden_size, hidden_size).to(torch_dtype).cpu()
|
|
qkv_weights = torch_split(qkv_weights, tensor_parallel, rank,
|
|
dim=1).reshape(
|
|
3 * (hidden_size // tensor_parallel),
|
|
hidden_size)
|
|
|
|
qkv_bias = qkv_bias.reshape(3, hidden_size).to(torch_dtype).cpu()
|
|
qkv_bias = torch_split(qkv_bias, tensor_parallel, rank,
|
|
dim=1).reshape(
|
|
3 * (hidden_size // tensor_parallel))
|
|
|
|
weights[
|
|
f"{tllm_prex}attention.qkv.weight"] = qkv_weights.contiguous()
|
|
weights[f"{tllm_prex}attention.qkv.bias"] = qkv_bias.contiguous()
|
|
else:
|
|
weights[f"{tllm_prex}attention.qkv.weight"] = qkv_weights.to(
|
|
torch_dtype).cpu()
|
|
weights[f"{tllm_prex}attention.qkv.bias"] = qkv_bias.to(
|
|
torch_dtype).cpu()
|
|
|
|
# Final Layer Norm
|
|
v = hf_phi_state_dict.get('model.final_layernorm.weight')
|
|
weights["transformer.ln_f.weight"] = v.to(torch_dtype).cpu()
|
|
|
|
v = hf_phi_state_dict.get('model.final_layernorm.bias')
|
|
weights["transformer.ln_f.bias"] = v.to(torch_dtype).cpu()
|
|
|
|
# LM Head
|
|
v = hf_phi_state_dict.get('lm_head.weight').to(torch_dtype).cpu()
|
|
if tensor_parallel > 1:
|
|
# [vocab_size, hidden_size] ->
|
|
# [vocab_size // tensor_parallel, hidden_size]
|
|
if v.shape[0] % tensor_parallel != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(v.shape[0], tensor_parallel)
|
|
pad_width = vocab_size_padded - v.shape[0]
|
|
v = np.pad(v, ((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0)
|
|
|
|
v = torch_split(v, tensor_parallel, rank, dim=0)
|
|
weights["lm_head.weight"] = v
|
|
|
|
v = hf_phi_state_dict.get('lm_head.bias').to(torch_dtype).cpu()
|
|
if tensor_parallel > 1:
|
|
v = torch_split(v, tensor_parallel, rank, dim=0)
|
|
weights["lm_head.bias"] = v
|
|
|
|
return weights
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=0,
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
|
)
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# TODO(qijun): Currently, the convert script depends on a torch op:
|
|
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
|
|
# which is included in tensorrt_llm Python package. Otherwise, the convert
|
|
# script does not need to import tensorrt_llm. Will remove it after reimplementing
|
|
# the op with PyTorch.
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
world_size = args.tp_size * args.pp_size
|
|
assert args.pp_size == 1, "Pipeline parallelism is not supported."
|
|
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
hf_model = AutoModelForCausalLM.from_pretrained(args.model_dir,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True)
|
|
hf_config = hf_model.config
|
|
config = {
|
|
'architecture': hf_config.architectures[0],
|
|
'dtype': args.dtype,
|
|
'num_hidden_layers': hf_config.num_hidden_layers,
|
|
'num_attention_heads': hf_config.num_key_value_heads,
|
|
'partial_rotary_factor': hf_config.partial_rotary_factor,
|
|
'rope_theta': hf_config.rope_theta,
|
|
'hidden_size': hf_config.hidden_size,
|
|
'intermediate_size': hf_config.intermediate_size,
|
|
'vocab_size': hf_config.vocab_size,
|
|
'max_position_embeddings': hf_config.max_position_embeddings,
|
|
'hidden_act': hf_config.hidden_act,
|
|
'mapping': {
|
|
'world_size': world_size,
|
|
'tp_size': args.tp_size,
|
|
'pp_size': args.pp_size,
|
|
},
|
|
'use_parallel_embedding': False,
|
|
'embedding_sharding_dim': args.embedding_sharding_dim,
|
|
'share_embedding_table': False,
|
|
}
|
|
|
|
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
|
|
def covert_and_save(rank):
|
|
weights = convert_hf_phi(
|
|
hf_model,
|
|
rank,
|
|
world_size,
|
|
dtype=args.dtype,
|
|
use_parallel_embedding=args.use_parallel_embedding,
|
|
sharding_dim=args.embedding_sharding_dim)
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
|
|
|
if args.workers == 1:
|
|
for rank in range(world_size):
|
|
covert_and_save(rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
|
futures = [
|
|
p.submit(covert_and_save, rank) for rank in range(world_size)
|
|
]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|