TensorRT-LLMs/examples/phi/convert_checkpoint.py
Kaiyu Xie 0ab9d17a59
Update TensorRT-LLM (#1055)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-06 18:38:07 +08:00

304 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import safetensors
import torch
from transformers import AutoModelForCausalLM
import tensorrt_llm
from tensorrt_llm._utils import pad_vocab_size, str_dtype_to_torch
def torch_split(v, tensor_parallel, idx, dim=0):
if tensor_parallel == 1:
return v
else:
return (torch.split(v, v.shape[dim] // tensor_parallel,
dim=dim)[idx]).contiguous()
def convert_hf_phi(hf_model,
rank=0,
tensor_parallel=1,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0):
hf_model_phi_block_names = [
"input_layernorm.weight",
"input_layernorm.bias",
"self_attn.dense.weight",
"self_attn.dense.bias",
"mlp.fc1.weight",
"mlp.fc1.bias",
"mlp.fc2.weight",
"mlp.fc2.bias",
]
tensorrt_llm_model_phi_block_names = [
"input_layernorm.weight",
"input_layernorm.bias",
"attention.dense.weight",
"attention.dense.bias",
"mlp.fc.weight",
"mlp.fc.bias",
"mlp.proj.weight",
"mlp.proj.bias",
]
weights = {}
torch_dtype = str_dtype_to_torch(dtype)
hf_phi_state_dict = hf_model.state_dict()
# Embedding
# [vocab_size, hidden_size]
v = hf_phi_state_dict.get('model.embed_tokens.weight').to(torch_dtype).cpu()
if use_parallel_embedding:
v = torch_split(v, tensor_parallel, rank, sharding_dim)
weights['transformer.vocab_embedding.weight'] = v
# Decoder Layers
n_layer = hf_model.config.num_hidden_layers
for layer_idx in range(n_layer):
hf_prefix = f"model.layers.{layer_idx}."
tllm_prex = f'transformer.layers.{layer_idx}.'
# MLPs
for idx, hf_attr in enumerate(hf_model_phi_block_names):
v = hf_phi_state_dict.get(hf_prefix + hf_attr).to(torch_dtype).cpu()
if tensor_parallel > 1:
if 'self_attn.dense.weight' in hf_attr:
# [n=hidden_size, k=hidden_size] ->
# [n=hidden_size, k=hidden_size // tensor_parallel]
v = torch_split(v, tensor_parallel, rank, dim=1)
elif 'mlp.fc1.weight' in hf_attr:
# [hidden_size * 4, hidden_size] ->
# [hidden_size * 4 // tensor_parallel, hidden_size]
v = torch_split(v, tensor_parallel, rank, dim=0)
elif 'mlp.fc1.bias' in hf_attr:
# [hidden_size * 4] -> [hidden_size * 4 // tensor_parallel]
v = torch_split(v, tensor_parallel, rank, dim=0)
elif 'mlp.fc2.weight' in hf_attr:
# [hidden_size, hidden_size * 4] ->
# [hidden_size, hidden_size * 4 // tensor_parallel]
v = torch_split(v, tensor_parallel, rank, dim=1)
tllm_attr = tensorrt_llm_model_phi_block_names[idx]
weights[f'{tllm_prex}{tllm_attr}'] = v
# Attention QKV Linear
num_heads = hf_model.config.num_attention_heads
hidden_size = hf_model.config.hidden_size
hidden_size // num_heads
# [(num_heads x q)|(num_heads x k)|(num_heads x v), hidden_size]
q_weights = hf_phi_state_dict.get(hf_prefix + "self_attn.q_proj.weight")
k_weights = hf_phi_state_dict.get(hf_prefix + "self_attn.k_proj.weight")
v_weights = hf_phi_state_dict.get(hf_prefix + "self_attn.v_proj.weight")
q_bias = hf_phi_state_dict.get(hf_prefix + "self_attn.q_proj.bias")
k_bias = hf_phi_state_dict.get(hf_prefix + "self_attn.k_proj.bias")
v_bias = hf_phi_state_dict.get(hf_prefix + "self_attn.v_proj.bias")
qkv_weights = torch.cat((q_weights, k_weights, v_weights), dim=0)
qkv_bias = torch.cat((q_bias, k_bias, v_bias), dim=0)
qkv_weights = qkv_weights.reshape([hidden_size * 3, hidden_size])
qkv_bias = qkv_bias.reshape([hidden_size * 3])
if tensor_parallel > 1:
qkv_weights = qkv_weights.reshape(
3, hidden_size, hidden_size).to(torch_dtype).cpu()
qkv_weights = torch_split(qkv_weights, tensor_parallel, rank,
dim=1).reshape(
3 * (hidden_size // tensor_parallel),
hidden_size)
qkv_bias = qkv_bias.reshape(3, hidden_size).to(torch_dtype).cpu()
qkv_bias = torch_split(qkv_bias, tensor_parallel, rank,
dim=1).reshape(
3 * (hidden_size // tensor_parallel))
weights[
f"{tllm_prex}attention.qkv.weight"] = qkv_weights.contiguous()
weights[f"{tllm_prex}attention.qkv.bias"] = qkv_bias.contiguous()
else:
weights[f"{tllm_prex}attention.qkv.weight"] = qkv_weights.to(
torch_dtype).cpu()
weights[f"{tllm_prex}attention.qkv.bias"] = qkv_bias.to(
torch_dtype).cpu()
# Final Layer Norm
v = hf_phi_state_dict.get('model.final_layernorm.weight')
weights["transformer.ln_f.weight"] = v.to(torch_dtype).cpu()
v = hf_phi_state_dict.get('model.final_layernorm.bias')
weights["transformer.ln_f.bias"] = v.to(torch_dtype).cpu()
# LM Head
v = hf_phi_state_dict.get('lm_head.weight').to(torch_dtype).cpu()
if tensor_parallel > 1:
# [vocab_size, hidden_size] ->
# [vocab_size // tensor_parallel, hidden_size]
if v.shape[0] % tensor_parallel != 0:
# padding
vocab_size_padded = pad_vocab_size(v.shape[0], tensor_parallel)
pad_width = vocab_size_padded - v.shape[0]
v = np.pad(v, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
v = torch_split(v, tensor_parallel, rank, dim=0)
weights["lm_head.weight"] = v
v = hf_phi_state_dict.get('lm_head.bias').to(torch_dtype).cpu()
if tensor_parallel > 1:
v = torch_split(v, tensor_parallel, rank, dim=0)
weights["lm_head.bias"] = v
return weights
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
if __name__ == '__main__':
# TODO(qijun): Currently, the convert script depends on a torch op:
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
# which is included in tensorrt_llm Python package. Otherwise, the convert
# script does not need to import tensorrt_llm. Will remove it after reimplementing
# the op with PyTorch.
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
assert args.pp_size == 1, "Pipeline parallelism is not supported."
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
hf_model = AutoModelForCausalLM.from_pretrained(args.model_dir,
torch_dtype="auto",
trust_remote_code=True)
hf_config = hf_model.config
config = {
'architecture': hf_config.architectures[0],
'dtype': args.dtype,
'num_hidden_layers': hf_config.num_hidden_layers,
'num_attention_heads': hf_config.num_key_value_heads,
'partial_rotary_factor': hf_config.partial_rotary_factor,
'rope_theta': hf_config.rope_theta,
'hidden_size': hf_config.hidden_size,
'intermediate_size': hf_config.intermediate_size,
'vocab_size': hf_config.vocab_size,
'max_position_embeddings': hf_config.max_position_embeddings,
'hidden_act': hf_config.hidden_act,
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'use_parallel_embedding': False,
'embedding_sharding_dim': args.embedding_sharding_dim,
'share_embedding_table': False,
}
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
def covert_and_save(rank):
weights = convert_hf_phi(
hf_model,
rank,
world_size,
dtype=args.dtype,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim)
safetensors.torch.save_file(
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
if args.workers == 1:
for rank in range(world_size):
covert_and_save(rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank) for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')