mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-29 23:23:48 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
1014 lines
45 KiB
Python
1014 lines
45 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import configparser
|
|
import time
|
|
from operator import attrgetter
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from safetensors import safe_open
|
|
from tqdm import tqdm
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import (str_dtype_to_np, str_dtype_to_torch,
|
|
torch_to_numpy)
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import QWenForCausalLM
|
|
from tensorrt_llm.quantization import QuantMode
|
|
|
|
|
|
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
|
|
suffix = f"{rank}.bin"
|
|
if use_smooth_quant:
|
|
sq_prefix = "int8."
|
|
if quant_per_channel:
|
|
sq_prefix += "col."
|
|
suffix = sq_prefix + suffix
|
|
return suffix
|
|
|
|
|
|
def extract_layer_idx(name):
|
|
ss = name.split('.')
|
|
for s in ss:
|
|
if s.isdigit():
|
|
return s
|
|
return None
|
|
|
|
|
|
def split(v: Union[np.ndarray, torch.Tensor],
|
|
tp_size: int,
|
|
tp_rank: int,
|
|
dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
assert len(v.shape) > 1 or dim == 0
|
|
if isinstance(v, np.ndarray):
|
|
return np.ascontiguousarray(
|
|
np.split(v, tp_size, axis=dim)[tp_rank].copy())
|
|
else:
|
|
assert v.shape[dim] % tp_size == 0, \
|
|
'Unable to split: shape={v.shape} (dim={dim}) tp_size={tp_size}.'
|
|
split_size = v.shape[dim] // tp_size
|
|
return v.split(split_size, dim=dim)[tp_rank].clone().detach()
|
|
|
|
|
|
def parse_bin_config(ini_file):
|
|
qwen_config = configparser.ConfigParser()
|
|
qwen_config.read(ini_file)
|
|
|
|
vocab_size = qwen_config.getint('qwen', 'vocab_size')
|
|
hidden_size = qwen_config.getint('qwen', 'hidden_size')
|
|
inter_size = qwen_config.getint('qwen', 'intermediate_size', fallback=None)
|
|
num_hidden_layers = qwen_config.getint(
|
|
"qwen",
|
|
"num_hidden_layers",
|
|
fallback=32,
|
|
)
|
|
max_position_embeddings = qwen_config.getint("qwen",
|
|
"max_position_embeddings",
|
|
fallback=8192)
|
|
kv_channels = qwen_config.getint('qwen', 'kv_channels', fallback=128)
|
|
rotary_pct = qwen_config.getfloat('qwen', 'rotary_pct', fallback=0.0)
|
|
rotary_emb_base = qwen_config.getint('qwen',
|
|
'rotary_emb_base',
|
|
fallback=10000)
|
|
multi_query_mode = qwen_config.getboolean('qwen',
|
|
'multi_query_mode',
|
|
fallback=False)
|
|
return (vocab_size, hidden_size, inter_size, num_hidden_layers, kv_channels,
|
|
rotary_pct, rotary_emb_base, multi_query_mode,
|
|
max_position_embeddings)
|
|
|
|
|
|
def load_from_binary(tensorrt_llm_qwen: QWenForCausalLM,
|
|
dir_path,
|
|
mapping=Mapping(),
|
|
dtype='float16',
|
|
multi_query_mode=False):
|
|
tensorrt_llm.logger.info('Loading weights from FT...')
|
|
tik = time.time()
|
|
quant_mode = getattr(tensorrt_llm_qwen, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
(vocab_size, hidden_size, inter_size, num_hidden_layers, kv_channels,
|
|
rotary_pct, rotary_emb_base, multi_query_mode,
|
|
max_position_embeddings) = parse_bin_config(Path(dir_path) / 'config.ini')
|
|
np_dtype = str_dtype_to_np(dtype)
|
|
|
|
def fromfile(dir_path, name, shape=None, dtype=np.float16):
|
|
dtype = np_dtype if dtype is None else dtype
|
|
p = dir_path + '/' + name
|
|
if Path(p).exists():
|
|
t = np.fromfile(p, dtype=dtype)
|
|
if shape is not None:
|
|
t = t.reshape(shape)
|
|
return t
|
|
else:
|
|
print(f"Warning: {p} not found.")
|
|
return None
|
|
|
|
def set_smoothquant_scale_factors(
|
|
module,
|
|
pre_scale_weight,
|
|
dir_path,
|
|
basename,
|
|
shape,
|
|
per_tok_dyn,
|
|
per_channel,
|
|
is_qkv=False,
|
|
rank=None,
|
|
):
|
|
suffix = "bin"
|
|
if per_channel:
|
|
if rank is not None:
|
|
suffix = f"{rank}." + suffix
|
|
suffix = "col." + suffix
|
|
|
|
col_shape = shape if (per_channel or is_qkv) else [1, 1]
|
|
if per_tok_dyn:
|
|
if pre_scale_weight is not None:
|
|
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
|
|
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
else:
|
|
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
|
|
np.float32)
|
|
pre_scale_weight.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
|
|
np.float32)
|
|
module.act_scale.value = t
|
|
|
|
def set_smoother(module, dir_path, base_name, shape, rank):
|
|
suffix = f"{rank}.bin"
|
|
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
|
|
np.float32)
|
|
module.smoother.value = t
|
|
|
|
# Determine the quantization mode.
|
|
quant_mode = getattr(tensorrt_llm_qwen, "quant_mode", QuantMode(0))
|
|
# Do we use SmoothQuant?
|
|
use_smooth_quant = quant_mode.has_act_and_weight_quant()
|
|
# Do we use quantization per token?
|
|
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
|
|
# Do we use quantization per channel?
|
|
quant_per_channel = quant_mode.has_per_channel_scaling()
|
|
|
|
# Do we use INT4/INT8 weight-only?
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
# Int8 KV cache
|
|
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
|
|
|
|
# Debug
|
|
suffix = gen_suffix(mapping.tp_rank, use_smooth_quant, quant_per_channel)
|
|
# The type of weights.
|
|
w_type = np_dtype if not use_smooth_quant else np.int8
|
|
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_qwen.embedding.vocab_embedding.weight.value = (fromfile(
|
|
dir_path, 'vocab_embedding.weight.bin', [vocab_size, hidden_size]))
|
|
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.ln_f.weight.value = (fromfile(dir_path,
|
|
'ln_f.weight.bin'))
|
|
|
|
lm_head_weight = fromfile(dir_path, 'lm_head.weight.bin',
|
|
[vocab_size, hidden_size])
|
|
|
|
if vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = tensorrt_llm_qwen.lm_head.out_features * mapping.tp_size
|
|
pad_width = vocab_size_padded - vocab_size
|
|
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0)
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.lm_head.weight.value = np.ascontiguousarray(
|
|
split(lm_head_weight, mapping.tp_size, mapping.tp_rank))
|
|
|
|
layers_per_pipeline_stage = tensorrt_llm_qwen.num_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
|
|
for i in layers_range:
|
|
c_attn_out_dim = (3 * hidden_size //
|
|
mapping.tp_size) if not multi_query_mode else (
|
|
hidden_size // mapping.tp_size +
|
|
(hidden_size // num_hidden_layers) * 2)
|
|
idx = i - mapping.pp_rank * layers_per_pipeline_stage
|
|
tensorrt_llm_qwen.layers[idx].ln_1.weight.value = fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.ln_1.weight.bin')
|
|
|
|
dst = tensorrt_llm_qwen.layers[idx].ln_2.weight
|
|
dst.value = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.ln_2.weight.bin')
|
|
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.qkv.weight.' + suffix,
|
|
[hidden_size, c_attn_out_dim], w_type)
|
|
if t is not None:
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.qkv.weight
|
|
if use_smooth_quant:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_qwen.layers[idx].attention.qkv,
|
|
tensorrt_llm_qwen.layers[idx].ln_1.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.qkv.',
|
|
[1, c_attn_out_dim],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=mapping.tp_rank,
|
|
is_qkv=True)
|
|
elif use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
idx].attention.qkv.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.qkv.bias
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.attention.qkv.bias.' +
|
|
str(mapping.tp_rank) + '.bin', [c_attn_out_dim])
|
|
dst.value = np.ascontiguousarray(t)
|
|
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.dense.weight
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
|
|
[hidden_size // mapping.tp_size, hidden_size], w_type)
|
|
if use_smooth_quant:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
dense_scale = getattr(tensorrt_llm_qwen.layers[idx].attention,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_qwen.layers[idx].attention.dense,
|
|
dense_scale,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.',
|
|
[1, hidden_size],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
)
|
|
set_smoother(tensorrt_llm_qwen.layers[idx].attention.dense,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense',
|
|
[1, hidden_size // mapping.tp_size], mapping.tp_rank)
|
|
|
|
elif use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
i].attention.dense.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
|
|
t = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.mlp.w1.weight.' + suffix,
|
|
[hidden_size, inter_size // mapping.tp_size // 2], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.gate.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_qwen.layers[idx].mlp.gate,
|
|
tensorrt_llm_qwen.layers[idx].ln_2.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.w1.',
|
|
[1, inter_size // mapping.tp_size // 2],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=mapping.tp_rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_qwen.layers[idx].mlp.gate.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[idx].mlp.gate.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.gate.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
|
|
t = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.mlp.w2.weight.' + suffix,
|
|
[hidden_size, inter_size // mapping.tp_size // 2], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.fc.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_qwen.layers[idx].mlp.fc,
|
|
tensorrt_llm_qwen.layers[idx].ln_2.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.w2.',
|
|
[1, inter_size // mapping.tp_size // 2],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=mapping.tp_rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_qwen.layers[idx].mlp.fc.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[idx].mlp.fc.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.fc.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
|
|
t = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.mlp.c_proj.weight.' + suffix,
|
|
[inter_size // mapping.tp_size // 2, hidden_size], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.proj.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
proj_scale = getattr(tensorrt_llm_qwen.layers[idx].mlp,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_qwen.layers[idx].mlp.proj, proj_scale, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.c_proj.', [1, hidden_size],
|
|
quant_per_token_dyn, quant_per_channel)
|
|
set_smoother(tensorrt_llm_qwen.layers[idx].mlp.proj, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.c_proj',
|
|
[1, inter_size // mapping.tp_size // 2],
|
|
mapping.tp_rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_qwen.layers[idx].mlp.proj.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[idx].mlp.proj.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.proj.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
|
|
if use_int8_kv_cache:
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.qkv.scale_y_quant_orig.bin', [1], np.float32)
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.kv_cache_scaling_factor.value = t
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
|
|
def load_from_hf_qwen(tensorrt_llm_qwen: tensorrt_llm.models.QWenForCausalLM,
|
|
hf_qwen,
|
|
mapping=Mapping(),
|
|
dtype="float32",
|
|
multi_query_mode=False):
|
|
tensorrt_llm.logger.info('Loading weights from HF QWen...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_qwen, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
model_params = dict(hf_qwen.named_parameters())
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
layers_per_pipeline_stage = hf_qwen.config.num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
|
|
for k, v in tqdm(model_params.items(),
|
|
total=len(model_params),
|
|
ncols=80,
|
|
desc="Converting..."):
|
|
if 'visual' in k:
|
|
continue
|
|
if isinstance(v, list):
|
|
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
|
|
else:
|
|
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
|
|
if 'transformer.wte.weight' in k:
|
|
if tensorrt_llm_qwen.use_parallel_embedding:
|
|
v = split(v, mapping.tp_size, mapping.tp_rank,
|
|
tensorrt_llm_qwen.embedding_sharding_dim)
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_qwen.embedding.vocab_embedding.weight.value = v
|
|
elif 'transformer.ln_f.weight' in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.ln_f.weight.value = v
|
|
elif 'lm_head.weight' in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.lm_head.weight.value = np.ascontiguousarray(
|
|
split(v, mapping.tp_size, mapping.tp_rank))
|
|
else:
|
|
layer_idx = extract_layer_idx(k)
|
|
if layer_idx is None or int(layer_idx) not in layers_range:
|
|
continue
|
|
idx = int(layer_idx) - mapping.pp_rank * layers_per_pipeline_stage
|
|
if idx >= tensorrt_llm_qwen.num_layers:
|
|
continue
|
|
if 'ln_1.weight' in k:
|
|
tensorrt_llm_qwen.layers[idx].ln_1.weight.value = v
|
|
elif 'ln_2.weight' in k:
|
|
tensorrt_llm_qwen.layers[idx].ln_2.weight.value = v
|
|
elif 'attn.c_attn.weight' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.qkv.weight
|
|
if multi_query_mode:
|
|
assert isinstance(v, list) and len(v) == 3
|
|
wq = split(v[0], mapping.tp_size, mapping.tp_rank)
|
|
wk = split(v[1], mapping.tp_size, mapping.tp_rank)
|
|
wv = split(v[2], mapping.tp_size, mapping.tp_rank)
|
|
split_v = np.concatenate((wq, wk, wv))
|
|
else:
|
|
q_emb = v.shape[0] // 3
|
|
model_emb = v.shape[1]
|
|
v = v.reshape(3, q_emb, model_emb)
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size),
|
|
model_emb)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
idx].attention.qkv.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'attn.c_attn.bias' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.qkv.bias
|
|
if multi_query_mode:
|
|
assert isinstance(v, list) and len(v) == 3
|
|
wq = split(v[0], mapping.tp_size, mapping.tp_rank)
|
|
wk = split(v[1], mapping.tp_size, mapping.tp_rank)
|
|
wv = split(v[2], mapping.tp_size, mapping.tp_rank)
|
|
split_v = np.concatenate((wq, wk, wv))
|
|
else:
|
|
q_emb = v.shape[0] // 3
|
|
v = v.reshape(3, q_emb)
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size))
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'attn.c_proj.weight' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.dense.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
idx].attention.dense.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'mlp.w1.weight' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].mlp.gate.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=0)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
idx].mlp.gate.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'mlp.w2.weight' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].mlp.fc.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=0)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
idx].mlp.fc.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'mlp.c_proj.weight' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].mlp.proj.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_qwen.layers[
|
|
idx].mlp.proj.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
else:
|
|
print("unknown key: ", k)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
return
|
|
|
|
|
|
def load_from_gptq_qwen(
|
|
tensorrt_llm_qwen: QWenForCausalLM,
|
|
quant_ckpt_path,
|
|
mapping=Mapping(),
|
|
dtype="float16",
|
|
):
|
|
tensorrt_llm.logger.info(
|
|
"loading weights from groupwise gptq qwen safetensors...")
|
|
tik = time.time()
|
|
|
|
if quant_ckpt_path.endswith(".safetensors"):
|
|
groupwise_qweight_safetensors = safe_open(quant_ckpt_path,
|
|
framework="pt",
|
|
device='cpu')
|
|
model_params = {
|
|
key: groupwise_qweight_safetensors.get_tensor(key)
|
|
for key in groupwise_qweight_safetensors.keys()
|
|
}
|
|
elif quant_ckpt_path.endswith(".pt"):
|
|
model_params = torch.load(quant_ckpt_path,
|
|
map_location=torch.device("cpu"))
|
|
else:
|
|
if Path(quant_ckpt_path).is_dir():
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
quant_ckpt_path, device_map="auto",
|
|
trust_remote_code=True).eval().cpu()
|
|
model_params = {k: v for k, v in model.state_dict().items()}
|
|
torch.cuda.empty_cache()
|
|
del model
|
|
else:
|
|
raise ValueError("quantized checkpoint format not supported!")
|
|
|
|
def unpack_int32_into_int8(w_packed):
|
|
# unpack inputs packed in int32/float32 into uint4 and store them in int8 format
|
|
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
|
|
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
|
|
w_packed_int4x2.shape[1] * 2,
|
|
dtype=torch.int8)
|
|
w_unpacked[:, ::2] = w_packed_int4x2 % 16
|
|
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
|
|
return w_unpacked.contiguous()
|
|
|
|
def preprocess_groupwise_weight_params(
|
|
weight_name,
|
|
qweight_int32=None,
|
|
qzeros_int32=None,
|
|
scales_fp16=None,
|
|
):
|
|
if weight_name is not None:
|
|
qweight_int32 = model_params[weight_name].cpu()
|
|
qzeros_int32 = model_params[weight_name[:-7] + "qzeros"].cpu()
|
|
scales_fp16 = model_params[weight_name[:-7] + "scales"].cpu()
|
|
|
|
UINT4_TO_INT4_FLAG = 1
|
|
GPTQ_FLAG = 1
|
|
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
|
|
|
qweight_unpacked_int8 = (
|
|
unpack_int32_into_int8(qweight_int32.T).T.contiguous() - 8)
|
|
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
|
|
torch.quint4x2).view(torch.float16)
|
|
# zeros = zeros * scales
|
|
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
|
|
|
|
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * UINT4_TO_INT4_FLAG -
|
|
GPTQ_FLAG) * scales_fp16
|
|
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
|
|
|
|
# return processed interleaved weight, original scales and zeros * scales
|
|
return (
|
|
qweight_interleaved.contiguous(), # dtype: int8
|
|
zeros_x_scales_fp16.contiguous(), # dtype: float16
|
|
scales_fp16.contiguous(), # dtype: float16
|
|
)
|
|
|
|
layer_ids = [
|
|
extract_layer_idx(key) for key in model_params.keys()
|
|
if 'visual' not in key
|
|
] #exclude 'visual' for Qwen-VL case
|
|
layer_ids = [
|
|
int(layer_idx) for layer_idx in layer_ids if layer_idx is not None
|
|
]
|
|
num_hidden_layers = max(layer_ids) + 1
|
|
suffixs = ["qweight", "qzeros", "scales"]
|
|
|
|
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(
|
|
mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage,
|
|
1,
|
|
))
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
for layer in tqdm(layers_range,
|
|
ncols=80,
|
|
desc="loading attention weight..."):
|
|
prefix = f"transformer.h.{layer}.attn."
|
|
split_qkv_suf = []
|
|
for suf in suffixs:
|
|
qkv_part = model_params[prefix + "c_attn." + suf].cpu()
|
|
q_emb = qkv_part.shape[1] // 3
|
|
model_emb = qkv_part.shape[0]
|
|
qkv_part = qkv_part.reshape(model_emb, 3, q_emb)
|
|
split_qkv = split(qkv_part, mapping.tp_size, mapping.rank, dim=2)
|
|
split_qkv = split_qkv.reshape(model_emb,
|
|
3 * (q_emb // mapping.tp_size))
|
|
# dtype: int32, int32, float16
|
|
split_qkv_suf.append(split_qkv)
|
|
|
|
idx = layer - mapping.pp_rank * layers_per_pipeline_stage
|
|
th_bias = model_params[prefix + "c_attn.bias"].to(
|
|
torch_dtype).cpu().contiguous()
|
|
|
|
q_emb = th_bias.shape[0] // 3
|
|
th_bias = th_bias.reshape(3, q_emb)
|
|
split_v = split(th_bias, mapping.tp_size, mapping.rank, dim=1)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size))
|
|
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.qkv.bias.value = np.ascontiguousarray(split_v)
|
|
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None,
|
|
split_qkv_suf[0],
|
|
split_qkv_suf[1],
|
|
split_qkv_suf[2],
|
|
)
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.qkv.weight.value = th_qweight.numpy()
|
|
tensorrt_llm_qwen.layers[idx].attention.qkv.zero.value = th_zero.to(
|
|
torch_dtype).numpy()
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.qkv.weights_scaling_factor.value = th_scale.to(
|
|
torch_dtype).numpy()
|
|
|
|
for k, v in tqdm(model_params.items(),
|
|
ncols=80,
|
|
desc="loading other weight..."):
|
|
if 'visual' in k:
|
|
continue
|
|
if isinstance(v, list):
|
|
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
|
|
else:
|
|
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
|
|
|
|
if "transformer.wte.weight" in k:
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm.logger.info(f"converting: {k}")
|
|
tensorrt_llm_qwen.embedding.vocab_embedding.weight.value = v
|
|
elif "transformer.ln_f.weight" in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.ln_f.weight.value = v
|
|
elif "lm_head.weight" in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.lm_head.weight.value = np.ascontiguousarray(
|
|
split(v, mapping.tp_size, mapping.rank))
|
|
else:
|
|
layer_idx = extract_layer_idx(k)
|
|
if layer_idx is None:
|
|
continue
|
|
idx = int(layer_idx)
|
|
if idx not in layers_range:
|
|
continue
|
|
idx = idx - mapping.pp_rank * layers_per_pipeline_stage
|
|
|
|
if "ln_1.weight" in k:
|
|
tensorrt_llm_qwen.layers[idx].ln_1.weight.value = v
|
|
elif "ln_2.weight" in k:
|
|
tensorrt_llm_qwen.layers[idx].ln_2.weight.value = v
|
|
elif 'post_attention_layernorm.weight' in k:
|
|
tensorrt_llm_qwen.layers[idx].post_layernorm.weight.value = v
|
|
elif "attn.c_proj.qweight" in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[0] // mapping.tp_size,
|
|
dim=0)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.dense.weight.value = th_qweight.numpy()
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.dense.zero.value = th_zero.to(
|
|
torch_dtype).numpy()
|
|
tensorrt_llm_qwen.layers[
|
|
idx].attention.dense.weights_scaling_factor.value = th_scale.to(
|
|
torch_dtype).numpy()
|
|
elif "mlp.w1.qweight" in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.gate.weight.value = th_qweight.numpy()
|
|
tensorrt_llm_qwen.layers[idx].mlp.gate.zero.value = th_zero.to(
|
|
torch_dtype).numpy()
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.gate.weights_scaling_factor.value = th_scale.to(
|
|
torch_dtype).numpy()
|
|
elif "mlp.c_proj.qweight" in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[0] // mapping.tp_size,
|
|
dim=0)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.proj.weight.value = th_qweight.numpy()
|
|
tensorrt_llm_qwen.layers[idx].mlp.proj.zero.value = th_zero.to(
|
|
torch_dtype).numpy()
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.proj.weights_scaling_factor.value = th_scale.to(
|
|
torch_dtype).numpy()
|
|
elif "mlp.w2.qweight" in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.fc.weight.value = th_qweight.numpy()
|
|
tensorrt_llm_qwen.layers[idx].mlp.fc.zero.value = th_zero.to(
|
|
torch_dtype).numpy()
|
|
tensorrt_llm_qwen.layers[
|
|
idx].mlp.fc.weights_scaling_factor.value = th_scale.to(
|
|
torch_dtype).numpy()
|
|
elif 'attn.c_attn.bias' in k:
|
|
dst = tensorrt_llm_qwen.layers[idx].attention.qkv.bias
|
|
q_emb = v.shape[0] // 3
|
|
v = v.reshape(3, q_emb)
|
|
split_v = split(v, mapping.tp_size, mapping.rank, dim=1)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size))
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
|
|
tok = time.time()
|
|
t = time.strftime("%h:%m:%s", time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f"weights loaded. total time: {t}")
|
|
|
|
|
|
def load_from_awq_qwen(tensorrt_llm_qwen: QWenForCausalLM,
|
|
quant_ckpt_path,
|
|
quantize_lm_head=False,
|
|
mapping=Mapping(),
|
|
dtype="float16"):
|
|
tensorrt_llm.logger.info(
|
|
'Loading weights from groupwise AWQ Qwen safetensors...')
|
|
tik = time.time()
|
|
|
|
if quant_ckpt_path.endswith(".safetensors"):
|
|
groupwise_qweight_safetensors = safe_open(quant_ckpt_path,
|
|
framework="pt",
|
|
device=0)
|
|
model_params = {
|
|
key: groupwise_qweight_safetensors.get_tensor(key)
|
|
for key in groupwise_qweight_safetensors.keys()
|
|
}
|
|
elif quant_ckpt_path.endswith(".pt"):
|
|
model_params = torch.load(quant_ckpt_path,
|
|
map_location=torch.device('cpu'))
|
|
else:
|
|
assert False, "Quantized checkpoint format not supported!"
|
|
|
|
group_size = model_params["transformer.h.0.attn.c_proj.weight"].numel(
|
|
) // model_params[
|
|
"transformer.h.0.attn.c_proj.weight_quantizer._amax"].numel()
|
|
|
|
awq_block_names = [
|
|
"ln_1.weight",
|
|
"ln_2.weight",
|
|
]
|
|
|
|
tensorrt_llm_block_names = [
|
|
"ln_1.weight",
|
|
"ln_2.weight",
|
|
]
|
|
|
|
getattr(tensorrt_llm_qwen, 'quant_mode', QuantMode(0))
|
|
|
|
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
def torch_split(v, dim):
|
|
if v.shape[dim] % mapping.tp_size != 0:
|
|
tensorrt_llm.logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(mapping.tp_size))
|
|
assert False, "Invalid TP size"
|
|
return v.split(v.shape[dim] // mapping.tp_size,
|
|
dim=dim)[mapping.tp_rank]
|
|
|
|
def AWQ_quantize_pack_preprocess(weight, scale):
|
|
scale = scale.repeat_interleave(group_size, dim=0)
|
|
weight = weight / scale # fp16 -> int8
|
|
qweight_int8 = torch.clamp(torch.round(weight.cuda()).char(), -8, 7)
|
|
int4_weight = packer(qweight_int8.cpu())
|
|
int4_weight = preprocessor(int4_weight,
|
|
torch.quint4x2) # int8 save as uint4
|
|
return int4_weight.view(torch.float16).cpu().numpy()
|
|
|
|
def process_and_assign_attn_weight(model_params, mPrefix, mOp, tp_dim=0):
|
|
weight = model_params[mPrefix + ".weight"].to(torch_dtype)
|
|
q_emb = weight.shape[0] // 3
|
|
model_emb = weight.shape[1]
|
|
weight = weight.reshape(3, q_emb, model_emb)
|
|
# [k, n] = weight.shape
|
|
split_v = split(weight, mapping.tp_size, mapping.rank, dim=tp_dim)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size), model_emb)
|
|
amax = model_params[mPrefix + ".weight_quantizer._amax"].reshape(
|
|
(q_emb * 3, int(model_emb / group_size))).to(torch_dtype)
|
|
amax = amax.reshape(3, q_emb, model_emb // group_size)
|
|
split_amax = split(amax, mapping.tp_size, mapping.rank, dim=tp_dim)
|
|
split_amax = split_amax.reshape(3 * (q_emb // mapping.tp_size),
|
|
model_emb // group_size)
|
|
split_v = split_v.T.contiguous()
|
|
split_amax = split_amax.T.contiguous()
|
|
pre_quant_scale = model_params[
|
|
mPrefix + ".input_quantizer._pre_quant_scale"].reshape(
|
|
(1, model_emb)).to(torch_dtype)
|
|
split_scale = split_amax / 8.0
|
|
mOp.weight.value = AWQ_quantize_pack_preprocess(split_v, split_scale)
|
|
mOp.weights_scaling_factor.value = split_scale.cpu().numpy()
|
|
mOp.prequant_scaling_factor.value = pre_quant_scale.cpu().numpy()
|
|
|
|
def process_and_assign_weight(model_params, mPrefix, mOp, tp_dim=0):
|
|
weight = model_params[mPrefix + ".weight"].T.contiguous()
|
|
[k, n] = weight.shape
|
|
weight = torch_split(weight, tp_dim)
|
|
amax = model_params[mPrefix + ".weight_quantizer._amax"].reshape(
|
|
(n, int(k / group_size))).T.contiguous()
|
|
amax = torch_split(amax, tp_dim)
|
|
pre_quant_scale = model_params[
|
|
mPrefix + ".input_quantizer._pre_quant_scale"].reshape((1, k))
|
|
if tp_dim == 0:
|
|
pre_quant_scale = torch_split(pre_quant_scale, 1)
|
|
scale = amax / 8.0
|
|
mOp.weight.value = AWQ_quantize_pack_preprocess(weight, scale)
|
|
mOp.weights_scaling_factor.value = scale.to(torch_dtype).cpu().numpy()
|
|
mOp.prequant_scaling_factor.value = pre_quant_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
|
|
# Check if we need to pad vocab
|
|
v = model_params.get('transformer.wte.weight')
|
|
[vocab_size, k] = v.shape
|
|
pad_vocab = False
|
|
pad_vocab_size1 = vocab_size
|
|
if quantize_lm_head and vocab_size % 64 != 0:
|
|
pad_vocab = True
|
|
pad_vocab_size1 = int((vocab_size + 63) / 64) * 64
|
|
if pad_vocab:
|
|
new_v = torch.zeros([pad_vocab_size1, k])
|
|
new_v[:vocab_size, :] = v
|
|
v = new_v
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_qwen.embedding.vocab_embedding.weight.value = v.to(
|
|
torch_dtype).cpu().numpy()
|
|
|
|
layer_ids = [extract_layer_idx(key) for key in model_params.keys()]
|
|
layer_ids = [
|
|
int(layer_idx) for layer_idx in layer_ids if layer_idx is not None
|
|
]
|
|
|
|
num_hidden_layers = max(layer_ids) + 1
|
|
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
|
|
for layer_idx in tqdm(layers_range, "Loading weights..."):
|
|
prefix = "transformer.h." + str(layer_idx) + "."
|
|
for idx, awq_attr in enumerate(awq_block_names):
|
|
v = model_params[prefix + awq_attr]
|
|
layer = attrgetter(tensorrt_llm_block_names[idx])(
|
|
tensorrt_llm_qwen.layers[layer_idx])
|
|
setattr(layer, 'value', v.to(torch_dtype).cpu().numpy())
|
|
|
|
mPrefix = prefix + "attn.c_attn"
|
|
mOp = tensorrt_llm_qwen.layers[layer_idx].attention.qkv
|
|
process_and_assign_attn_weight(model_params, mPrefix, mOp, 1)
|
|
|
|
# Attention QKV Liner Bias
|
|
th_bias = model_params[prefix + "attn.c_attn.bias"].cpu().to(
|
|
torch_dtype).contiguous()
|
|
q_emb = th_bias.shape[0] // 3
|
|
th_bias = th_bias.reshape(3, q_emb)
|
|
split_v = split(th_bias, mapping.tp_size, mapping.rank, dim=1)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size))
|
|
tensorrt_llm_qwen.layers[
|
|
layer_idx].attention.qkv.bias.value = np.ascontiguousarray(split_v)
|
|
|
|
# Attention Dense (out_proj) Linear
|
|
mPrefix = prefix + "attn.c_proj"
|
|
mOp = tensorrt_llm_qwen.layers[layer_idx].attention.dense
|
|
process_and_assign_weight(model_params, mPrefix, mOp, 0)
|
|
|
|
# MLP down_proj (mlp.gate) Linear
|
|
mPrefix = prefix + "mlp.w1"
|
|
mOp = tensorrt_llm_qwen.layers[layer_idx].mlp.gate
|
|
process_and_assign_weight(model_params, mPrefix, mOp, 1)
|
|
|
|
# MLP up_proj (mlp.fc) Linear
|
|
mPrefix = prefix + "mlp.w2"
|
|
mOp = tensorrt_llm_qwen.layers[layer_idx].mlp.fc
|
|
process_and_assign_weight(model_params, mPrefix, mOp, 1)
|
|
|
|
# MLP gate_proj (mlp.proj) Linear
|
|
mPrefix = prefix + "mlp.c_proj"
|
|
mOp = tensorrt_llm_qwen.layers[layer_idx].mlp.proj
|
|
process_and_assign_weight(model_params, mPrefix, mOp, 0)
|
|
|
|
v = model_params['transformer.ln_f.weight']
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
# lm_head
|
|
if pad_vocab:
|
|
weight = model_params['lm_head.weight']
|
|
[vocab_size, k] = weight.shape
|
|
new_weight = torch.zeros([pad_vocab_size1, k])
|
|
new_weight[:vocab_size, :] = weight
|
|
new_weight = new_weight.T.contiguous()
|
|
amax = model_params['lm_head.weight_quantizer._amax'].reshape(
|
|
[vocab_size, k // group_size])
|
|
new_amax = torch.ones([pad_vocab_size1, k // group_size])
|
|
new_amax[:vocab_size, :] = amax
|
|
new_amax = new_amax.T.contiguous()
|
|
new_scale = new_amax / 8
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.lm_head.weight.value = AWQ_quantize_pack_preprocess(
|
|
new_weight, new_scale)
|
|
tensorrt_llm_qwen.lm_head.weights_scaling_factor.value = new_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
tensorrt_llm_qwen.lm_head.prequant_scaling_factor.value = model_params[
|
|
'lm_head.input_quantizer._pre_quant_scale'].to(
|
|
torch_dtype).cpu().numpy()
|
|
elif quantize_lm_head:
|
|
mPrefix = "lm_head"
|
|
mOp = tensorrt_llm_qwen.lm_head
|
|
if mapping.is_last_pp_rank():
|
|
process_and_assign_weight(model_params, mPrefix, mOp, 1)
|
|
else:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_qwen.lm_head.weight.value = torch_split(
|
|
model_params['lm_head.weight'],
|
|
0).to(torch_dtype).cpu().numpy()
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
if quant_ckpt_path.endswith(".safetensors"):
|
|
del groupwise_qweight_safetensors
|
|
del model_params
|
|
import gc
|
|
gc.collect()
|
|
return
|