TensorRT-LLMs/examples/whisper/build.py
Kaiyu Xie 655524dd82
Update TensorRT-LLM (#1168)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-27 17:37:34 +08:00

391 lines
14 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
import torch
from weight import load_decoder_weight, load_encoder_weight
import tensorrt_llm
from tensorrt_llm import str_dtype_to_torch, str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.functional import LayerNormPositionType, LayerNormType
from tensorrt_llm.logger import logger
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
MODEL_ENCODER_NAME = "whisper_encoder"
MODEL_DECODER_NAME = "whisper_decoder"
def get_engine_name(model, dtype, tp_size=1, rank=0):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--model_dir', type=str, default="assets")
parser.add_argument('--model_name',
type=str,
default="large-v3",
choices=[
"large-v3",
"large-v2",
"medium",
"small",
"base",
"tiny",
"medium.en",
"small.en",
"base.en",
"tiny.en",
"distil-large-v2",
"distil-medium.en",
"distil-small.en",
])
parser.add_argument('--quantize_dir', type=str, default="quantize/1-gpu")
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16'])
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=14)
parser.add_argument('--max_output_len', type=int, default=100)
parser.add_argument('--max_beam_width', type=int, default=4)
parser.add_argument(
'--use_gpt_attention_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_bert_attention_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates BERT attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_gemm_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates GEMM plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--output_dir',
type=str,
default='whisper_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument('--debug_mode', action='store_true')
args = parser.parse_args()
logger.set_level(args.log_level)
plugins_args = [
'use_gemm_plugin', 'use_gpt_attention_plugin',
'use_bert_attention_plugin'
]
for plugin_arg in plugins_args:
if getattr(args, plugin_arg) is None:
logger.info(
f"plugin_arg is None, setting it as {args.dtype} automatically."
)
setattr(args, plugin_arg, args.dtype)
if args.use_weight_only:
args.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
use_int4_weights="int4" in args.weight_only_precision)
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
return args
def build_encoder(model, args):
model_metadata = model['dims']
model_params = model['model_state_dict']
# cast params according dtype
for k, v in model_params.items():
model_params[k] = v.to(str_dtype_to_torch(args.dtype))
builder = Builder()
max_batch_size = args.max_batch_size
hidden_states = model_metadata['n_audio_state']
num_heads = model_metadata['n_audio_head']
num_layers = model_metadata['n_audio_layer']
model_is_multilingual = (model_metadata['n_vocab'] >= 51865)
builder_config = builder.create_builder_config(
name=MODEL_ENCODER_NAME,
precision=args.dtype,
tensor_parallel=1,
num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_states,
max_batch_size=max_batch_size,
max_beam_width=args.max_beam_width,
int8=args.quant_mode.has_act_or_weight_quant(),
n_mels=model_metadata['n_mels'],
num_languages=model_metadata['n_vocab'] - 51765 -
int(model_is_multilingual),
)
tensorrt_llm_whisper_encoder = tensorrt_llm.models.WhisperEncoder(
model_metadata['n_mels'], model_metadata['n_audio_ctx'],
model_metadata['n_audio_state'], model_metadata['n_audio_head'],
model_metadata['n_audio_layer'], str_dtype_to_trt(args.dtype))
if args.use_weight_only:
tensorrt_llm_whisper_encoder = quantize_model(
tensorrt_llm_whisper_encoder, args.quant_mode)
use_gemm_woq_plugin = args.use_gemm_plugin and args.use_weight_only
load_encoder_weight(tensorrt_llm_whisper_encoder, model_metadata,
model_params, model_metadata['n_audio_layer'],
use_gemm_woq_plugin)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_bert_attention_plugin:
network.plugin_config.set_bert_attention_plugin(
dtype=args.use_bert_attention_plugin)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if use_gemm_woq_plugin:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
with net_guard(network):
inputs = tensorrt_llm_whisper_encoder.prepare_inputs(
args.max_batch_size)
tensorrt_llm_whisper_encoder(*inputs)
if args.debug_mode:
for k, v in tensorrt_llm_whisper_encoder.named_network_outputs():
network._mark_output(v, k, str_dtype_to_trt(args.dtype))
engine = None
engine_name = get_engine_name(MODEL_ENCODER_NAME, args.dtype, 1, 0)
engine = builder.build_engine(network, builder_config)
config_path = os.path.join(args.output_dir, 'encoder_config.json')
builder.save_config(builder_config, config_path)
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
def build_decoder(model, args):
model_metadata = model['dims']
model_params = model['model_state_dict']
# cast params according dtype
for k, v in model_params.items():
model_params[k] = v.to(str_dtype_to_torch(args.dtype))
builder = Builder()
timing_cache_file = os.path.join(args.output_dir, 'decoder_model.cache')
builder_config = builder.create_builder_config(
name=MODEL_DECODER_NAME,
precision=args.dtype,
timing_cache=timing_cache_file,
tensor_parallel=args.world_size,
num_layers=model_metadata['n_text_layer'],
num_heads=model_metadata['n_text_head'],
hidden_size=model_metadata['n_text_state'],
vocab_size=model_metadata['n_vocab'],
hidden_act="gelu",
max_position_embeddings=model_metadata['n_text_ctx'],
apply_query_key_layer_scaling=False,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
opt_level=None,
cross_attention=True,
has_position_embedding=True,
has_token_type_embedding=False,
int8=args.quant_mode.has_act_or_weight_quant(),
)
tensorrt_llm_whisper_decoder = tensorrt_llm.models.DecoderModel(
num_layers=model_metadata['n_text_layer'],
num_heads=model_metadata['n_text_head'],
hidden_size=model_metadata['n_text_state'],
ffn_hidden_size=4 * model_metadata['n_text_state'],
encoder_hidden_size=model_metadata['n_text_state'],
encoder_num_heads=model_metadata['n_text_head'],
vocab_size=model_metadata['n_vocab'],
head_size=model_metadata['n_text_state'] //
model_metadata['n_text_head'],
max_position_embeddings=model_metadata['n_text_ctx'],
has_position_embedding=True,
relative_attention=False,
max_distance=0,
num_buckets=0,
has_embedding_layernorm=False,
has_embedding_scale=False,
q_scaling=1.0,
has_attention_qkvo_bias=True,
has_mlp_bias=True,
has_model_final_layernorm=True,
layernorm_eps=1e-5,
layernorm_position=LayerNormPositionType.pre_layernorm,
layernorm_type=LayerNormType.LayerNorm,
hidden_act="gelu",
rescale_before_lm_head=False,
dtype=str_dtype_to_trt(args.dtype),
logits_dtype=str_dtype_to_trt(args.dtype))
if args.use_weight_only:
tensorrt_llm_whisper_decoder = quantize_model(
tensorrt_llm_whisper_decoder, args.quant_mode)
use_gemm_woq_plugin = args.use_gemm_plugin and args.use_weight_only
load_decoder_weight(tensorrt_llm_whisper_decoder, model_params,
use_gemm_woq_plugin)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if use_gemm_woq_plugin:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
with net_guard(network):
inputs = tensorrt_llm_whisper_decoder.prepare_inputs(
args.max_batch_size,
args.max_beam_width,
args.max_input_len,
args.max_output_len,
model_metadata['n_audio_ctx'],
)
tensorrt_llm_whisper_decoder(*inputs)
if args.debug_mode:
for k, v in tensorrt_llm_whisper_decoder.named_network_outputs():
network._mark_output(v, k, str_dtype_to_trt(args.dtype))
engine = None
engine_name = get_engine_name(MODEL_DECODER_NAME, args.dtype, 1, 0)
engine = builder.build_engine(network, builder_config)
config_path = os.path.join(args.output_dir, 'decoder_config.json')
builder.save_config(builder_config, config_path)
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
def run_build(args):
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
model_path = os.path.join(args.model_dir, args.model_name + '.pt')
model = torch.load(model_path)
build_encoder(model, args)
build_decoder(model, args)
if __name__ == '__main__':
args = parse_arguments()
run_build(args)