TensorRT-LLMs/tensorrt_llm/models/bloom/model.py
Kaiyu Xie 655524dd82
Update TensorRT-LLM (#1168)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-27 17:37:34 +08:00

181 lines
6.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..._utils import pad_vocab_size
from ...functional import Tensor
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
Embedding, LayerNorm, PositionEmbeddingType)
from ...module import Module
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
PretrainedConfig)
class BloomDecoderLayer(Module):
def __init__(self, config: PretrainedConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
hidden_size = config.hidden_size
dtype = config.dtype
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
tp_rank = config.mapping.tp_rank
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.attention = Attention(
layer_idx=layer_idx,
hidden_size=hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
num_layers=config.num_hidden_layers,
dtype=dtype,
attention_mask_type=AttentionMaskType.causal,
position_embedding_type=PositionEmbeddingType.alibi,
bias=True,
tp_group=tp_group,
tp_size=tp_size,
tp_rank=tp_rank,
quant_mode=config.quant_mode)
mlp_hidden_size = hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
self.mlp = MLP(hidden_size=hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act='gelu',
dtype=dtype,
bias=True,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode)
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None):
assert isinstance(hidden_states, Tensor)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class BloomModel(Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
dtype = config.dtype
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
tp_rank = config.mapping.tp_rank
if config.use_parallel_embedding:
self.vocab_embedding = Embedding(
config.vocab_size,
config.hidden_size,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
sharding_dim=config.embedding_sharding_dim,
tp_rank=tp_rank)
else:
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=dtype)
self.ln_embed = LayerNorm(normalized_shape=config.hidden_size,
dtype=dtype)
self.layers = DecoderLayerList(BloomDecoderLayer, config)
self.ln_f = LayerNorm(normalized_shape=config.hidden_size, dtype=dtype)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None,
attention_params=None):
hidden_states = self.vocab_embedding(input_ids)
hidden_states = self.ln_embed(hidden_states)
hidden_states = self.layers(hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class BloomForCausalLM(DecoderModelForCausalLM):
def __init__(self, config: PretrainedConfig):
transformer = BloomModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
share_weight = None
if config.share_embedding_table:
share_weight = transformer.vocab_embedding.weight
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True,
share_weight=share_weight)
super().__init__(config, transformer, lm_head)